| $n$ | $l$ | $j$ | 記号 | $\Delta E\,[{\rm eV}]$ | $m_j$ | 固有関数 | 空間分布 | 
	
	
	|  $1$  |  $0$  |  $\frac{1}{2}$  |  $^{1}S_{\frac{1}{2}}$  | $0$ |  $ -\frac{1}{2}$  |  $\varphi_{100\downarrow}$  | 
	  | 
	
	
	|  $ \frac{1}{2}$  |  $\varphi_{100\uparrow}$  |   | 
	
	
	|  $2$  |  $ 0$  |  $\frac{1}{2}$  |  $^{2}S_{\frac{1}{2}}$  | $0$ |  $ -\frac{1}{2}$  |  $\varphi_{200\downarrow}$  |   | 
	
	
	|  $ \frac{1}{2}$  |  $\varphi_{200\uparrow}$  |   | 
	
	
	|  $ 1$  |  $\frac{1}{2}$  |  $^{2}P_{\frac{1}{2}}$  | $-9.48388 \times 10^{-5}$ |  $ -\frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[\sqrt{2}\varphi_{21-1\uparrow} - \varphi_{210\downarrow}  \right] $  |   | 
	
	
	|  $ \frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[\varphi_{210\uparrow} - \sqrt{2}  \varphi_{21+1\downarrow}  \right] $  |   | 
	
	
	|  $\frac{3}{2}$  |  $^{2}P_{\frac{3}{2}}$  | $-4.74194 \times 10^{-5}$ |  $-\frac{3}{2}$  |  $ \varphi_{21-1\downarrow} $  |   | 
	
	
	|  $-\frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[  \varphi_{21-1\uparrow} + \sqrt{2}\varphi_{210\downarrow}  \right] $  |   | 
	
	
	|  $\frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[ \sqrt{2} \varphi_{210\uparrow} + \varphi_{21+1\downarrow}  \right] $  |   | 
	
	
	|  $\frac{3}{2}$  |  $\varphi_{21+1\uparrow}$  |   | 
	
	
	|  $3$  |  $ 0$  |  $\frac{1}{2}$  |  $^{3}S_{\frac{1}{2}}$  | $0$ |  $ -\frac{1}{2}$  |  $\varphi_{300\downarrow}$  |   | 
	
	
	|  $ \frac{1}{2}$  |  $\varphi_{300\uparrow}$  |   | 
	
	
	|  $ 1$  |  $\frac{1}{2}$  |  $^{3}P_{\frac{1}{2}}$  | $-2.81004 \times 10^{-5}$ |  $ -\frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[\sqrt{2}\varphi_{31-1\uparrow} - \varphi_{310\downarrow}  \right] $  |   | 
	
	
	|  $ \frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[\varphi_{310\uparrow} - \sqrt{2}  \varphi_{31+1\downarrow}  \right] $  |   | 
	
	
	|  $\frac{3}{2}$  |  $^{3}P_{\frac{3}{2}}$  | $1.40502 \times 10^{-5}$ |  $-\frac{3}{2}$  |  $ \varphi_{31-1\downarrow} $  |   | 
	
	
	|  $-\frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[  \varphi_{31-1\uparrow} + \sqrt{2}\varphi_{310\downarrow}  \right] $  |   | 
	
	
	|  $\frac{1}{2}$  |  $\frac{1}{\sqrt{3}} \left[ \sqrt{2} \varphi_{310\uparrow} + \varphi_{31+1\downarrow}  \right] $  |   | 
	
	
	|  $\frac{3}{2}$  |  $\varphi_{31+1\uparrow}$  |   | 
	
	
	|  $ 2$  |  $\frac{3}{2}$  |  $^{3}D_{\frac{3}{2}}$  | $-8.43012 \times 10^{-6}$ |  $-\frac{3}{2}$  |  $\frac{1}{\sqrt{5}} \left[ 2\varphi_{32-2\uparrow} -\varphi_{32-1\downarrow}  \right] $  |   | 
	
	
	|  $-\frac{1}{2}$  |  $\frac{1}{\sqrt{5}} \left[ \sqrt{3}\varphi_{32-1\uparrow} -\sqrt{2} \varphi_{320\downarrow}  \right] $  |   | 
	
	
	|  $\frac{1}{2}$  |  $\frac{1}{\sqrt{5}} \left[ \sqrt{2}\varphi_{320\uparrow} -\sqrt{3} \varphi_{32+1\downarrow}  \right] $  |   | 
	
	
	|  $\frac{3}{2}$  |  $\frac{1}{\sqrt{5}} \left[ \varphi_{32+1\uparrow} -2 \varphi_{32+2\downarrow}  \right] $  |   | 
	
	
	|  $\frac{5}{2}$  |  $^{3}D_{\frac{5}{2}}$  | $5.62008 \times 10^{-6}$ |  $-\frac{5}{2}$  |  $\varphi_{32-2\downarrow}$  |   | 
	
	
	|  $-\frac{3}{2}$  |  $\frac{1}{\sqrt{5}} \left[  \varphi_{32-2\uparrow} + 2 \varphi_{32-1\downarrow}  \right] $  |   | 
	
	
	|  $-\frac{1}{2}$  |  $\frac{1}{\sqrt{5}} \left[ \sqrt{2} \varphi_{32-1\uparrow} + \sqrt{3} \varphi_{320\downarrow}  \right] $  |   | 
	
	
	|  $\frac{1}{2}$  |  $\frac{1}{\sqrt{5}} \left[ \sqrt{3} \varphi_{320\uparrow} + \sqrt{2} \varphi_{32+1\downarrow}  \right] $  |   | 
	
	
	|  $\frac{3}{2}$  |  $\frac{1}{\sqrt{5}} \left[ 2 \varphi_{32+1\uparrow} + \varphi_{32+2\downarrow}  \right] $  |   | 
	
	
	|  $\frac{5}{2}$  |  $\varphi_{32+2\uparrow}$  |   |