$n$ | $l$ | $j$ | 記号 | $\Delta E\,[{\rm eV}]$ | $m_j$ | 固有関数 | 空間分布 |
$1$ | $0$ | $\frac{1}{2}$ | $^{1}S_{\frac{1}{2}}$ | $0$ | $ -\frac{1}{2}$ | $\varphi_{100\downarrow}$ |
 |
$ \frac{1}{2}$ | $\varphi_{100\uparrow}$ |  |
$2$ | $ 0$ | $\frac{1}{2}$ | $^{2}S_{\frac{1}{2}}$ | $0$ | $ -\frac{1}{2}$ | $\varphi_{200\downarrow}$ |  |
$ \frac{1}{2}$ | $\varphi_{200\uparrow}$ |  |
$ 1$ | $\frac{1}{2}$ | $^{2}P_{\frac{1}{2}}$ | $-9.48388 \times 10^{-5}$ | $ -\frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[\sqrt{2}\varphi_{21-1\uparrow} - \varphi_{210\downarrow} \right] $ |  |
$ \frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[\varphi_{210\uparrow} - \sqrt{2} \varphi_{21+1\downarrow} \right] $ |  |
$\frac{3}{2}$ | $^{2}P_{\frac{3}{2}}$ | $-4.74194 \times 10^{-5}$ | $-\frac{3}{2}$ | $ \varphi_{21-1\downarrow} $ |  |
$-\frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[ \varphi_{21-1\uparrow} + \sqrt{2}\varphi_{210\downarrow} \right] $ |  |
$\frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[ \sqrt{2} \varphi_{210\uparrow} + \varphi_{21+1\downarrow} \right] $ |  |
$\frac{3}{2}$ | $\varphi_{21+1\uparrow}$ |  |
$3$ | $ 0$ | $\frac{1}{2}$ | $^{3}S_{\frac{1}{2}}$ | $0$ | $ -\frac{1}{2}$ | $\varphi_{300\downarrow}$ |  |
$ \frac{1}{2}$ | $\varphi_{300\uparrow}$ |  |
$ 1$ | $\frac{1}{2}$ | $^{3}P_{\frac{1}{2}}$ | $-2.81004 \times 10^{-5}$ | $ -\frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[\sqrt{2}\varphi_{31-1\uparrow} - \varphi_{310\downarrow} \right] $ |  |
$ \frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[\varphi_{310\uparrow} - \sqrt{2} \varphi_{31+1\downarrow} \right] $ |  |
$\frac{3}{2}$ | $^{3}P_{\frac{3}{2}}$ | $1.40502 \times 10^{-5}$ | $-\frac{3}{2}$ | $ \varphi_{31-1\downarrow} $ |  |
$-\frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[ \varphi_{31-1\uparrow} + \sqrt{2}\varphi_{310\downarrow} \right] $ |  |
$\frac{1}{2}$ | $\frac{1}{\sqrt{3}} \left[ \sqrt{2} \varphi_{310\uparrow} + \varphi_{31+1\downarrow} \right] $ |  |
$\frac{3}{2}$ | $\varphi_{31+1\uparrow}$ |  |
$ 2$ | $\frac{3}{2}$ | $^{3}D_{\frac{3}{2}}$ | $-8.43012 \times 10^{-6}$ | $-\frac{3}{2}$ | $\frac{1}{\sqrt{5}} \left[ 2\varphi_{32-2\uparrow} -\varphi_{32-1\downarrow} \right] $ |  |
$-\frac{1}{2}$ | $\frac{1}{\sqrt{5}} \left[ \sqrt{3}\varphi_{32-1\uparrow} -\sqrt{2} \varphi_{320\downarrow} \right] $ |  |
$\frac{1}{2}$ | $\frac{1}{\sqrt{5}} \left[ \sqrt{2}\varphi_{320\uparrow} -\sqrt{3} \varphi_{32+1\downarrow} \right] $ |  |
$\frac{3}{2}$ | $\frac{1}{\sqrt{5}} \left[ \varphi_{32+1\uparrow} -2 \varphi_{32+2\downarrow} \right] $ |  |
$\frac{5}{2}$ | $^{3}D_{\frac{5}{2}}$ | $5.62008 \times 10^{-6}$ | $-\frac{5}{2}$ | $\varphi_{32-2\downarrow}$ |  |
$-\frac{3}{2}$ | $\frac{1}{\sqrt{5}} \left[ \varphi_{32-2\uparrow} + 2 \varphi_{32-1\downarrow} \right] $ |  |
$-\frac{1}{2}$ | $\frac{1}{\sqrt{5}} \left[ \sqrt{2} \varphi_{32-1\uparrow} + \sqrt{3} \varphi_{320\downarrow} \right] $ |  |
$\frac{1}{2}$ | $\frac{1}{\sqrt{5}} \left[ \sqrt{3} \varphi_{320\uparrow} + \sqrt{2} \varphi_{32+1\downarrow} \right] $ |  |
$\frac{3}{2}$ | $\frac{1}{\sqrt{5}} \left[ 2 \varphi_{32+1\uparrow} + \varphi_{32+2\downarrow} \right] $ |  |
$\frac{5}{2}$ | $\varphi_{32+2\uparrow}$ |  |