静磁場(z軸方向)+振動磁場(y軸方向)のスピノールの時間発展(計算結果)

前回示したスピノールの時間発展の表式に基づいて、数値計算を行ったので結果を示すよ。
次のグラフは、時間依存する磁場を $\boldsymbol{B}(t) = (0, B_y\sin(\omega t), B_z)$ で、$ B_y = B_z = 0.1 [{\rm T}]$、 $\omega = 2\omega_L$ として、ルンゲ・クッタ法を用いて、時間発展を計算した結果だよ。初期状態は下向きスピン100%、上向きスピン0%です。

磁気共鳴によってスピンの向きが変化している様子が分かるね。でもラビ振動のように単純な形では無いけどね。

振動磁場の角振動数に対する遷移確率の最大値

次のグラフは、振動磁場の角振動数を $\bar{\omega} = 2\omega_L$ を基準として0から4まで変化させたときの遷移確率の最大値をプロットした結果だよ。

$\omega/\bar{\omega} = 1.0$ 過ぎから $1.2$ 手前までが、最大遷移確率が100%となっているね。次のグラフは、$\omega/\bar{\omega} =1.1$ としたときの、スピノールの時間変化の結果だよ。遷移確率が100%になっている時間があることが分かるね。


スピノールの時間発展(パウリ方程式のスピン依存)

磁場中の電子に対するスピン自由度を含めた波動関数 $\Psi(\boldsymbol{r}, t)$ は、シュレーディンガー方程式から導かれるパウリの方程式と呼ばれる

\begin{align}
i\hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t} = \left[ \frac{1}{2m_e} (-i\hbar\nabla + e\boldsymbol{A})^2 + V(r) + \frac{e}{m_e} \hat{\boldsymbol{S}} \cdot \boldsymbol{B} \right] \Psi(\boldsymbol{r}, t)
\end{align}

を満たすね。この方程式を満たす波動関数は空間依存部分 $\psi(\boldsymbol{r}, t)$ とスピン依存部分 $\chi(t)$ に分離して、$\Psi(\boldsymbol{r}, t)=\psi(\boldsymbol{r}, t)\chi(t)$ と表わすことで、方程式は変数分離できるね。

\begin{align}
i\hbar \frac{\partial \psi(\boldsymbol{r}, t)}{\partial t} &\, = \left[ \frac{1}{2m_e} (-i\hbar\nabla + e\boldsymbol{A})^2 + V(r) \right] \psi(\boldsymbol{r}, t)\\
i\hbar \frac{d \chi( t )}{d t} &\, = \frac{e}{m_e}\, \hat{\boldsymbol{S}} \cdot \boldsymbol{B}\, \chi(\boldsymbol{r}, t)
\end{align}

このスピン依存部分は、スピン角運動量 $\boldsymbol{S} = (S_x, S_y, S_z)$ をパウリ行列

\begin{align}
S_x = \frac{\hbar}{2} \left( \matrix{ 0 & 1 \cr 1 & 0} \right) \ , \ S_y = \frac{\hbar}{2} \left( \matrix{ 0 & -i \cr 1 & 0} \right)\ , \ S_z = \frac{\hbar}{2} \left( \matrix{ 1 & 0 \cr 0 & -1} \right)
\end{align}

で表したときのスピノールと呼ばれる縦ベクトルで表すことができるね。スピノールを

\begin{align}
\chi( t ) = \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right)
\end{align}

と表しておいて、パウリ方程式に代入して、$\chi_{\uparrow}(t)$ と $\chi_{\downarrow}(t)$ の時間依存性を計算することができるね。

静磁場中のスピノールの時間依存性

まずは、静磁場を $\boldsymbol{B} = (0, 0, B_z)$ として、静磁場中のスピノールの時間依存性を計算してみよう。パウリ方程式のスピン部分は

\begin{align}
i\hbar \frac{d }{d t} \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) &\ = \frac{e\hbar B_z}{2m_e}\, \left( \matrix{ 1 & 0 \cr 0 & -1} \right) \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) \\
&\ = \frac{e\hbar B_z}{2m_e}\,\left( \matrix{ \chi_{\uparrow}(t) \cr – \chi_{\downarrow}(t)} \right)
\end{align}

となるね。これは直ちに解くことができて、

\begin{align}
\chi( t ) = \left( \matrix{\chi_{\uparrow}(0) e^{-i\omega_L t} \cr \chi_{\downarrow}(0) e^{i\omega_L t}} \right) \ , \ \omega_L = \frac{e B_z}{2m_e}
\end{align}

となるね。$ |\chi( t )|^2 = |\chi( 0 )|^2 $ を満たすから、時間が経っても初期状態から変化しないことが分かるね。

振動磁場中のスピノールの時間依存性

次は、時間依存する磁場を $\boldsymbol{B}(t) = (0, 0, B_z\cos(\omega t))$ として、振動磁場中のスピノールの時間依存性を計算してみよう。パウリ方程式のスピン部分は

\begin{align}
i\hbar \frac{d }{d t} \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) &\ = \frac{e\hbar B_z\cos(\omega t)}{2m_e}\,
\left( \matrix{ 1 & 0 \cr 0 & -1} \right) \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) \\
&\ = \frac{e\hbar B_z\cos(\omega t)}{2m_e}\,\left( \matrix{ \chi_{\uparrow}(t) \cr – \chi_{\downarrow}(t)} \right)
\end{align}

となるね。これも直ちに解くことができて、

\begin{align}
\chi( t ) = \left( \matrix{\chi_{\uparrow}(0) e^{-i\frac{\omega_L}{\omega} \sin(\omega t)} \cr \chi_{\downarrow}(0) e^{i\frac{\omega_L}{\omega} \sin(\omega t)}} \right) \ , \
\omega_L = \frac{e B_z}{2m_e}
\end{align}

となるね。振動磁場を与えても $ |\chi( t )|^2 = |\chi( 0 )|^2 $ を満たすから、時間が経っても初期状態から変化しないことが分かるね。

静磁場に垂直方向の振動磁場を加えたときのスピノールの時間依存性

今度は、時間依存する磁場を $\boldsymbol{B}(t) = (0, B_y\sin(\omega t), B_z)$ として、振動磁場中のスピノールの時間依存性を計算してみよう。パウリ方程式のスピン部分は

\begin{align}
i\hbar \frac{d }{d t} \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) &\ =\frac{e\hbar }{2m_e}\left[B_y\sin(\omega t)\left( \matrix{ 0 & -i \cr i & 0} \right) + B_z\left( \matrix{ 1 & 0 \cr 0 & -1} \right)\right]
\left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) \\
&\ =\frac{e\hbar }{2m_e}\left( \matrix{ B_z& -iB_y\sin(\omega t) \cr iB_y\sin(\omega t) & -B_z} \right) \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) \\
&\ = \frac{e\hbar }{2m_e}\,\left( \matrix{ B_z\chi_{\uparrow}(t)-iB_y\sin(\omega t)\chi_{\downarrow}(t) \cr iB_y\sin(\omega t) \chi_{\uparrow}(t) -B_z\chi_{\downarrow}(t)} \right)
\end{align}

と、 $\chi_{\uparrow}(t)$ と $\chi_{\downarrow}(t)$ に関する連立微分方程式が得られるね。解析的に解けるかはわからないけれども、数値的に解くことで、スピノールの時間依存性を計算することができそうだね。異常ゼーマン効果で分かれる2つの準位間のエネルギーに相当する振動磁場(電磁波)の角振動数を与えると、共鳴が起こってスピンの向きが変わるね。これは磁気共鳴現象って呼ばれるよ。これを次回の課題にするね。

円偏光を入射したときのスピノールの時間依存性

最後に、時間依存する磁場を $\boldsymbol{B}(t) = (0, B_0\sin(\omega t), B_0\cos(\omega t))$ として、円偏光を入射したときのスピノールの時間依存性を計算してみよう。パウリ方程式のスピン部分は

\begin{align}
i\hbar \frac{d }{d t} \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) &\ =\frac{e\hbar }{2m_e}\left[B_y\left( \matrix{ 0 & -i \cr i & 0} \right) + B_z\cos(\omega t)\left( \matrix{ 1 & 0 \cr 0 & -1} \right)\right]
\left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) \\
&\ =\frac{e\hbar }{2m_e}\left( \matrix{ B_z\cos(\omega t) & -iB_y \cr iB_y & -B_z\cos(\omega t)} \right) \left( \matrix{\chi_{\uparrow}(t) \cr \chi_{\downarrow}(t)} \right) \\
&\ = \frac{e\hbar }{2m_e}\,\left( \matrix{ B_z\cos(\omega t)\chi_{\uparrow}(t)-iB_y\chi_{\downarrow}(t) \cr iB_y \chi_{\uparrow}(t) -B_z\cos(\omega t)\chi_{\downarrow}(t)} \right)
\end{align}

と、 $\chi_{\uparrow}(t)$ と $\chi_{\downarrow}(t)$ に関する連立微分方程式が得られるね。解析的に解けるかはわからないけれども、数値的に解くことで、スピノールの時間依存性を計算することができそうだね。円偏光でもスピンの向きは変化しそうだね。これも次回の課題にするね。


水素原子に電磁波(古典・円偏光)を加える場合のハミルトニアン

直線偏光の古典電磁波を水素原子に束縛された電子のハミルトニアンは以前示したね。今度は、円偏光の場合を導出するよ。偏光を考慮したベクトルポテンシャルは

\begin{align}
\boldsymbol{A} = \left\{ \matrix{ 0 \cr A_{y0} \cos(kx-\omega t + \phi_y) \cr A_{z0} \cos(kx-\omega t+ \phi_z)} \right.
\end{align}

と与えると、電場と磁場は次のようになるね。

\begin{align}
\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} =\left\{ \matrix{ 0 \cr -\omega A_{y0} \sin(kx-\omega t + \phi_y) \cr -\omega A_{z0} \sin(kx-\omega t+ \phi_z)} \right.
\end{align}
\begin{align}
\boldsymbol{B} = \nabla \times \boldsymbol{A} =\left\{ \matrix{ 0 \cr k A_{z0} \sin(kx-\omega t + \phi_z) \cr -k A_{y0} \sin(kx-\omega t+ \phi_y)} \right.
\end{align}

これを電磁場中の電子のハミルトニアン

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e}{m_e}\,\boldsymbol{A}\cdot \boldsymbol{p} + \frac{e}{m_e} \hat{\boldsymbol{S}}\cdot \boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e}
\end{align}

に代入すると完成だね。

電磁波による状態遷移の数値計算

時間依存性を計算するために、ハミルトニアンの時間依存部分 $\hat{V}(t)$ の空間積分の項を見てみよう。

\begin{align}
\int \varphi_{n’l’m’\sigma’}^* \hat{V}(t)\varphi_{nlm\sigma} dV &\ = \int \varphi_{n’l’m’\sigma’}^* \left[
-i\frac{e}{\hbar} [\hat{H}_0,\boldsymbol{r} ]\cdot\boldsymbol{A} + \frac{e }{m_e} \hat{\boldsymbol{S}}\cdot\boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e} \right] \varphi_{nlm\sigma} dV \\
&\ = \int \varphi_{n’l’m’\sigma’}^* \left[
-ie \frac{ E_{n’} – E_n }{\hbar}\,\boldsymbol{r}\cdot\boldsymbol{A} + \frac{e }{m_e} \hat{\boldsymbol{S}}\cdot\boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e} \right] \varphi_{nlm\sigma} dV
\end{align}

スピンと2次の項を無視して、さらに長波長近似(電磁波の波長が原子サイズより十分に大きいとする近似)を行うと、

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV &\ \simeq -ie \int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\,(yA_y +zA_z) \right] \varphi_{nlm} dV \\
&\ = \frac{-ie}{2}\,\frac{ E_{n’} – E_n }{\hbar} \left[A_{y0}\cos(\omega t – \phi_y) \int \varphi_{n’l’m’}^* y \varphi_{nlm} dV + A_{z0}\cos(\omega t – \phi_z) \int \varphi_{n’l’m’}^* z \varphi_{nlm} dV\right]
\end{align}

となるね。入射波を円偏光とするには、 $A_{y0} = A_{z0} = A_{0}$ かつ $\phi_y = 0 , \phi_z = \pm \pi/2 $ とすれば良いので、これを代入すると、

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV &\ \simeq -ie \int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\,(yA_y +zA_z) \right] \varphi_{nlm} dV \\
&\ = \frac{-ieA_0}{2}\,\frac{ E_{n’} – E_n }{\hbar} \left[\cos(\omega t) \int \varphi_{n’l’m’}^* y \varphi_{nlm} dV \pm \sin(\omega t) \int \varphi_{n’l’m’}^* z \varphi_{nlm} dV\right]
\end{align}

となるね。このハミルトニアンを元に次回は水素原子の基底状態にいる電子に円偏光電磁波を与えてみるよ。


水素原子に電磁波(古典・直線偏光)を加えたときのシミュレーション結果(ラビ振動)

以前解説したハミルトニアンを用いて、水素原子の基底状態の電子に電磁波(古典・直線偏光)を入射したの様子をシミュレーションしたよ。結果を示すね。

角振動数 $\omega_{12} = (E_2-E_1)/\hbar$ の電磁波を入射

次のグラフは、基底状態と第1励起状態のエネルギー準位の差に対応する電磁波を入射した結果だよ。$ \varphi_{100} $ と $ \varphi_{210} $ の間でラビ振動している様子が分かるね。

角振動数 $\omega_{12} = (E_2-E_1)/\hbar$ と $\omega_{23} = (E_3-E_2)/\hbar$の電磁波を入射

次のグラフは、基底状態と第1励起状態のエネルギー準位の差に対応する電磁波と、第1励起状態と第2励起状態ののエネルギー準位の差に対応する電磁波を同時に入射した結果だよ。$ \varphi_{100} $ と $ \varphi_{210} $ に加えて、$ \varphi_{100} $ から直接遷移することができない $ \varphi_{300} $ と $ \varphi_{320} $ にも励起しているね。このように、直接遷移が許されない状態が加わっても、存在確率が周期的に振動するのはちょっと意外だね。

次回は、円偏光の電磁波を入射するよ。


直線偏光・円偏光・楕円偏光のグラフィックスを作ったよ。

x軸方向に進む光はベクトルポテンシャル $\boldsymbol{A}$ で表すことができるね。

\begin{align}
\boldsymbol{A}= \left\{ \matrix{ 0 \cr A_{y0} \cos(kx-\omega t + \phi_y) \cr A_{z0} \cos(kx-\omega t + \phi_z) } \right.
\end{align}

この表式から、電場と磁場は次のように表されるね。

\begin{align}
\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} = \left\{ \matrix{ 0 \cr-\omega A_{y0} \sin(kx-\omega t + \phi_y) \cr -\omega A_{z0} \sin(kx-\omega t + \phi_z) } \right.
\end{align}
\begin{align}
\boldsymbol{B} = \nabla\times \boldsymbol{A} = \left\{ \matrix{ 0 \cr k A_{z0} \sin(kx-\omega t +
\phi_z) \cr -k A_{y0} \sin(kx-\omega t + \phi_y) } \right.
\end{align}

直線偏光( $A_{y0} = A_{z0}$ かつ $\phi_z = \phi_y $ )

下の図は、$ A_{y0} =1 , \ A_{z0} = 1$ 、$\phi_z = \phi_y = 0$ として、電場の向きを水平にとったときの電場と磁場のグラフィックスだよ。

円偏光( $A_{y0} = A_{z0}$ かつ $\phi_z – \phi_y = \pm \pi/2$ )

円偏光(左回り)

下の図は、$ A_{y0} = A_{z0} = 1$ 、$\phi_z – \phi_y = \pi/2$ とした、ベクトルポテンシャルのグラフィックスだよ。

円偏光(右回り)

下の図は、$ A_{y0} = A_{z0} = 1$ 、$\phi_z – \phi_y = -\pi/2$ とした、ベクトルポテンシャルのグラフィックスだよ。

円偏光( $A_{y0} = A_{z0}$ かつ $\phi_z – \phi_y \ne \pm \pi/2$ )

下の図は、$ A_{y0} = A_{z0} = 1$ 、$\phi_z – \phi_y = \pi/4$ とした、ベクトルポテンシャルのグラフィックスだよ。


水素原子に静電場を急激に加えたときのシミュレーション結果

前回解説した水素原子に静電場を急激に加えたときの緩和時間シミュレーションの結果を示すよ。次の図は初期状態として $\varphi_{200}$ 100%の状態に $ E_z = 10^{9}[\rm{V/m}]$ の静電場を急に加えたときの $\varphi_{200}$ と $\varphi_{210}$ の存在確率の時間経過だよ。$\varphi_{200}$ 100%の状態と $\varphi_{210}$ 100%の状態が一定の周期で交互に現れるね。

考察:単振動的な運動をする理由

$\varphi_{200}$ と $\varphi_{210}$ は静電場中ではエネルギーが高い一方で、その50%づつの混合状態が一番エネルギーが低いのだよね。つまり、下の図で示したとおり、エネルギーの高い初期状態 $\varphi_{200}$ 100% からスタートして、エネルギー低い方に状態が変化して行くけれども、一番低いところで止まらずに反対の $\varphi_{210}$ 100% の状態まで変化していっているね。もし、エネルギーが散逸するメカニズムがあれば、最低エネルギーに落ち着くよね。きっと。


水素原子に静電場を急激に加えたときの緩和時間シミュレーション方法

水素原子に電磁波を加えるシミュレーションの前に、数値計算の確認を兼ねて、水素原子に静電場を急激に掛けたときの緩和時間をシミュレーションしてみるよ。水素原子に静電場を加えた場合、電場によって固有関数が歪むシュタルク効果を以前解説したね。今回は、時刻 $t<0$ では外場無しの状態から、$t\geq0$ で急に $V_0$ の電場を加えたときの状態変化の様子をシミュレーションするよ。数値計算の手順をいかに解説するね。ハミルトニアンを外場無しと時間に依存するポテンシャル項に分けるね。

\begin{align}
\hat{H} = \hat{H}_0 + \hat{V}(\boldsymbol{r}, t)
\end{align}

$\hat{V}(t)$ を次の通りとするよ(電場の向きをz軸方向とするね)。

\begin{align}
\hat{V}(\boldsymbol{r}, t) = \left\{ \matrix{ 0 & (t<0) \cr eE_zz & (t\geq 0)} \right. \end{align}

時刻 $t$ の波動関数を $\Psi(\boldsymbol{r}, t) $ を外場無しの場合の固有状態 $\varphi_{nlm}$ で展開して、展開係数が時間に依存すると考えるよ。

\begin{align}
\Psi(\boldsymbol{r}, t) = \sum\limits_{nlm} a_{nlm}(t) \varphi_{nlm}(\boldsymbol{r})
\end{align}

これを元のシュレディンガー方程式 $i\hbar \frac{\partial}{\partial t} \Psi(\boldsymbol{r}, t) = \hat{H} \Psi(\boldsymbol{r}, t) $ に代入して、両辺に $\varphi_{n’l’m’}^*$ を掛けて全空間で積分するよ。

\begin{align}
i\hbar \frac{d a_{n’l’m’}(t)}{dt} = E_{n’} a_{n’l’m’}(t)+ \sum\limits_{nlm} a_{nlm}(t) \int \varphi_{n’l’m’}^* \hat{V}(\boldsymbol{r}, t) \varphi_{nlm}dV
\end{align}

ちょっと整理して、

\begin{align}
\frac{d a_{n’l’m’}(t)}{dt} = \frac{1}{ i\hbar } \left[E_{n’} a_{n’l’m’}(t) + \sum\limits_{nlm} V^{n’l’m’}_{nlm}(t)\, a_{nlm}(t) \right]
\end{align}

という形をしているね。つまり、$a_{n’l’m’}(t)$ の時間変化は、その時刻の全固有状態の展開係数の値 $a_{nlm}(t)$ と、ポテンシャル積分項の値から計算できることを意味しているね。このポテンシャル積分項の具体的な表記は

\begin{align}
V^{n’l’m’}_{nlm}(t) \equiv \int_0^\infty\!\!\! r^2 dr \int_0^\pi \!\!\! \sin\theta d\theta \int_0^{2\pi} \!\!\! d\phi \left[\varphi_{n’l’m’}^* \hat{V}(\boldsymbol{r}, t)\,\varphi_{nlm} \right] = \left\{ \matrix{ 0 & (t<0) \cr eE_z \int_0^\infty\!\!\! r^2 dr \int_0^\pi \!\!\! \sin\theta d\theta \int_0^{2\pi} \!\!\! d\phi \left[\varphi_{n'l'm'}^* z\,\varphi_{nlm} \right] & (t\geq 0)} \right. \end{align}

となるね。このポテンシャル積分項を用いて、先の $ a_{n’l’m’}(t) $ の常微分方程式を数値的に計算すれば良いね。次回は実際にルンゲ・クッタ法を用いて、緩和時間をシミュレーションしてみるよ。


水素原子に電磁波(古典・直線偏光)を加える場合のハミルトニアン

任意の電磁場中を運動する電子のハミルトニアンは「静磁場が加わる場合のハミルトニアンを復習しよう!」で示したとおりだね。ベクトルポテンシャルを $\boldsymbol{A}$、スカラーポテンシャルを $\phi$ とした場合、

\begin{align}
\hat{H} = \frac{1}{2m_e} (\hat{\boldsymbol{p}} + e \boldsymbol{A})^2 -e \phi
\end{align}

となるね。水素原子に束縛された電子を考えると、クーロンゲージを採用して

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e}{m_e}\,\boldsymbol{A}\cdot \boldsymbol{p} + \frac{e^2 \boldsymbol{A}^2}{2m_e}
\end{align}

となるね。$\hat{H}_0$ は外場が無い場合の水素原子に束縛された電子のハミルトニアン

\begin{align}
\hat{H}_0 = \frac{\hat{\boldsymbol{p}}^2}{2m_e} – \frac{e^2}{ 4\pi\epsilon_0} \, \frac{1}{r}
\end{align}

だよ。電磁波の場合には、このベクトルポテンシャル $\boldsymbol{A}(t)$ が時間に依存するんだね。さらに、スピンも考慮するならば、スピンのゼーマン項を加えて

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e}{m_e}\,\boldsymbol{A}\cdot \boldsymbol{p} + \frac{e}{m_e} \hat{\boldsymbol{S}}\cdot \boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e}
\end{align}

だね。今回、電磁波の進行方向をx軸として、磁場成分をy軸、電場成分をz軸となるように、ベクトルポテンシャルを

\begin{align}
\boldsymbol{A} = \left(0, 0, A_0 \cos(kx-\omega t) \right)
\end{align}

と与えると、電場と磁場は次のようになるね。

\begin{align}
\boldsymbol{E} &\ = -\frac{\partial \boldsymbol{A}}{\partial t} =\left(0, 0, – \omega A_0 \sin(kx-\omega t) \right)\\
\boldsymbol{B} &\ = \nabla \times \boldsymbol{A} =\left(0, k A_0 \sin(kx-\omega t), 0 \right)
\end{align}

電磁波による状態遷移の数値計算

電子の状態遷移を議論するには、時間に依存したシュレディンガー方程式

\begin{align}
i\hbar\frac{\partial}{\partial t} \psi(\boldsymbol{r}, t) = \hat{H} \psi(\boldsymbol{r}, t)
\end{align}

を解けばいいんだね。まずは波動関数 $\psi(\boldsymbol{r}, t) $ を外場無し固有状態で

\begin{align}
\psi(\boldsymbol{r}, t) = \sum\limits_{n, l, m, s_z} a_{nlms_z}(t)\, \varphi_{nlms_z}
\end{align}

のように展開して、展開係数が時間に依存すると考えることができるね。次に、$\hat{H} = \hat{H}_0 + \hat{V}(t)$ とおいてこれをシュレディンガー方程式に代入すると

\begin{align}
\sum\limits_{n, l, m, s_z}i\hbar\frac{d a_{nlms_z}(t)}{d t} \, \varphi_{nlms_z} = \sum\limits_{n, l, m, s_z}\left[E_n + \hat{V}(t)\right] a_{nlms_z}(t)\, \varphi_{nlms_z}
\end{align}

となるね。両辺に $\varphi_{n’l’m’s_z’}^*$ を掛けて全空間で積分すると展開係数に関する連立常微分方程式が得られるね。

\begin{align}
i\hbar\frac{d a_{n’l’m’s_z’}(t)}{d t} = E_{n’}a_{n’l’m’s_z’}(t) + \sum\limits_{n, l, m, s_z} a_{nlms_z}(t) \int \varphi_{n’l’m’s_z’}^* \hat{V}(t)\varphi_{nlms_z} dV
\end{align}

この $\hat{V}(t)$ に電磁波との相互作用を与えるわけだね。$\hat{\boldsymbol{p}}/m_e = -i [\hat{H}_0,\boldsymbol{r} ]/\hbar$ を考慮して、$\hat{V}(t)$ の空間積分の項を見てみよう。

\begin{align}
\int \varphi_{n’l’m’s_z’}^* \hat{V}(t)\varphi_{nlms_z} dV &\ = \int \varphi_{n’l’m’s_z’}^* \left[
-i\frac{e}{\hbar} [\hat{H}_0,\boldsymbol{r} ]\cdot\boldsymbol{A} + \frac{e }{m_e} \hat{S}_yB_y + \frac{e^2 A_0^2}{2m_e}\, \cos^2(kx-\omega t) \right] \varphi_{nlms_z} dV \\
&\ = \int \varphi_{n’l’m’s_z’}^* \left[
-ie \frac{ E_{n’} – E_n }{\hbar}\, z A_0 \cos(kx-\omega t) + \frac{ek\hbar A_0 s_z}{m_e} \,\sin(kx-\omega t) + \frac{e^2 A_0^2}{2m_e}\, \cos^2(kx-\omega t) \right] \varphi_{nlms_z} dV \\
&\ = -\frac{i A_0e}{2} e^{-i\omega t}\int \varphi_{n’l’m’s_z’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z + \frac{k\hbar s_z}{m_e} \right] e^{ikx} \varphi_{nlms_z} dV\\
&\ \ \ \ \ -\frac{i A_0e}{2} e^{i\omega t}\int \varphi_{n’l’m’s_z’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z – \frac{ k\hbar s_z}{m_e} \right] e^{-ikx} \varphi_{nlms_z} dV\\
&\ \ \ \ \ + \frac{e^2 A_0^2}{8m_e} \left[ 1 + e^{-2i\omega t} \int \varphi_{n’l’m’s_z’}^* e^{2ikx} \varphi_{nlms_z} dV + e^{2i\omega t} \int \varphi_{n’l’m’s_z’}^* e^{-2ikx} \varphi_{nlms_z} dV \right]
\end{align}

最後の変形は時間依存部分を積分の外に出すために、

\begin{align}
\cos(kx-\omega t) &\ = \frac{1}{2} \left[ e^{ikx-i\omega t} + e^{-ikx+i\omega t} \right]\\
\sin(kx-\omega t) &\ = \frac{1}{2i} \left[ e^{ikx-i\omega t} – e^{-ikx+i\omega t} \right]\\
\end{align}

と変形しているよ。ちょっと複雑になったけれども、時間依存部分はすべて積分の外に出たので、時間ステップごとに積分を実行しなくて済むね。あとは、ルンゲ・クッタ法などの常微分方程式を解く計算アルゴリズムで、この連立常微分方程式が得られるね。ちなみに、$\hat{\boldsymbol{p}}\cdot\boldsymbol{A}$ は電子の軌道運動による電磁波の吸収と放出を、$\hat{\boldsymbol{s}}\cdot\boldsymbol{B}$ は電子のスピンによる電磁波の吸収と放出を表すよ。また、$\boldsymbol{A}^2$ は電磁場の量子化後に分かるけれども、光子の2個吸収、2個放出、光子の散乱に寄与するよ。

スピンと2次の項を無視する場合

先のポテンシャル積分項にて、スピンと2次の効果を無視すると

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV = -\frac{i A_0e}{2} \left[e^{-i\omega t}\int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z \right] e^{ikx} \varphi_{nlm} dV + e^{i\omega t}\int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z \right] e^{-ikx} \varphi_{nlm} dV \right]
\end{align}

となるね。さらに、原子サイズに対して、波の波長が十分に大きい場合、$ e^{ikx} \simeq 1 $、$ e^{-ikx} \simeq 1$ が十分成り立つね(光子のエネルギー $10[{\rm eV}]$ の波長が約 $100 [{\rm nm}]$ なので十分だね)。積分に関係ない部分をすべて外に出すと

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV = -i A_0e \frac{ E_{n’} – E_n }{\hbar} \cos(\omega t) \int \varphi_{n’l’m’}^* z \varphi_{nlm} dV
\end{align}

となって、ポテンシャル積分項は、係数を除いて、実質的に以前解説した電気双極子の行列要素と一致するね。このハミルトニアンを元に、次回は水素原子の基底状態にいる電子に電磁波を与えてみるよ。