水素原子に電磁波(古典・直線偏光)を加えたときのシミュレーション結果(ラビ振動)

以前解説したハミルトニアンを用いて、水素原子の基底状態の電子に電磁波(古典・円偏光)を入射したの様子をシミュレーションしたよ。結果を示すね。

角振動数 $\omega_{12} = (E_2-E_1)/\hbar$ の電磁波を入射

次のグラフは、基底状態と第1励起状態のエネルギー準位の差に対応する電磁波を入射した結果だよ。$ \varphi_{100} $ と $ \varphi_{210}, \varphi_{21-1}, \varphi_{21+1} $ の間でラビ振動している様子が分かるね。

直線偏光の場合は、$\varphi_{210}$ にしか遷移しなかったけれども、円偏光を入射すると $ \varphi_{21-1} $ と $ \varphi_{21+1} $ にもそれぞれ25%づつ遷移するね。これらの和は、y軸方向に向いた電気双極子を表すので、円偏光と言っても、実質的には、z軸方向とy軸方向にそれぞれ電気双極子が誘起されるって感じだね。


水素原子に電磁波(古典・円偏光)を加える場合のハミルトニアン

直線偏光の古典電磁波を水素原子に束縛された電子のハミルトニアンは以前示したね。今度は、円偏光の場合を導出するよ。偏光を考慮したベクトルポテンシャルは

\begin{align}
\boldsymbol{A} = \left\{ \matrix{ 0 \cr A_{y0} \cos(kx-\omega t + \phi_y) \cr A_{z0} \cos(kx-\omega t+ \phi_z)} \right.
\end{align}

と与えると、電場と磁場は次のようになるね。

\begin{align}
\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} =\left\{ \matrix{ 0 \cr -\omega A_{y0} \sin(kx-\omega t + \phi_y) \cr -\omega A_{z0} \sin(kx-\omega t+ \phi_z)} \right.
\end{align}
\begin{align}
\boldsymbol{B} = \nabla \times \boldsymbol{A} =\left\{ \matrix{ 0 \cr k A_{z0} \sin(kx-\omega t + \phi_z) \cr -k A_{y0} \sin(kx-\omega t+ \phi_y)} \right.
\end{align}

これを電磁場中の電子のハミルトニアン

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e}{m_e}\,\boldsymbol{A}\cdot \boldsymbol{p} + \frac{e}{m_e} \hat{\boldsymbol{S}}\cdot \boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e}
\end{align}

に代入すると完成だね。

電磁波による状態遷移の数値計算

時間依存性を計算するために、ハミルトニアンの時間依存部分 $\hat{V}(t)$ の空間積分の項を見てみよう。

\begin{align}
\int \varphi_{n’l’m’\sigma’}^* \hat{V}(t)\varphi_{nlm\sigma} dV &\ = \int \varphi_{n’l’m’\sigma’}^* \left[
-i\frac{e}{\hbar} [\hat{H}_0,\boldsymbol{r} ]\cdot\boldsymbol{A} + \frac{e }{m_e} \hat{\boldsymbol{S}}\cdot\boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e} \right] \varphi_{nlm\sigma} dV \\
&\ = \int \varphi_{n’l’m’\sigma’}^* \left[
-ie \frac{ E_{n’} – E_n }{\hbar}\,\boldsymbol{r}\cdot\boldsymbol{A} + \frac{e }{m_e} \hat{\boldsymbol{S}}\cdot\boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e} \right] \varphi_{nlm\sigma} dV
\end{align}

スピンと2次の項を無視して、さらに長波長近似(電磁波の波長が原子サイズより十分に大きいとする近似)を行うと、

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV &\ \simeq -ie \int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\,(yA_y +zA_z) \right] \varphi_{nlm} dV \\
&\ = \frac{-ie}{2}\,\frac{ E_{n’} – E_n }{\hbar} \left[A_{y0}\cos(\omega t – \phi_y) \int \varphi_{n’l’m’}^* y \varphi_{nlm} dV + A_{z0}\cos(\omega t – \phi_z) \int \varphi_{n’l’m’}^* z \varphi_{nlm} dV\right]
\end{align}

となるね。入射波を円偏光とするには、 $A_{y0} = A_{z0} = A_{0}$ かつ $\phi_y = 0 , \phi_z = \pm \pi/2 $ とすれば良いので、これを代入すると、

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV &\ \simeq -ie \int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\,(yA_y +zA_z) \right] \varphi_{nlm} dV \\
&\ = \frac{-ieA_0}{2}\,\frac{ E_{n’} – E_n }{\hbar} \left[\cos(\omega t) \int \varphi_{n’l’m’}^* y \varphi_{nlm} dV \pm \sin(\omega t) \int \varphi_{n’l’m’}^* z \varphi_{nlm} dV\right]
\end{align}

となるね。このハミルトニアンを元に次回は水素原子の基底状態にいる電子に円偏光電磁波を与えてみるよ。