スピン1/2の2粒子が自由空間に存在するときの空間分布

スピン1/2の粒子2個が存在する場合、それぞれのスピンの値によって、波動関数の空間部分は「対称」あるいは「反対称」となることが知られているね。今回は、最も簡単な1次元自由空間中で2個の粒子が平面波で表される場合の空間分布を復習するよ。波動関数の空間部分の対称関数と反対称関数はそれぞれ

\begin{align}
\psi^{(S)}(x_1, x_2, t) &\ = \frac{1}{\sqrt{2}} \left[ e^{i k_1\cdot x_1 +i k_2\cdot x_2} + e^{i k_1\cdot x_2 +i k_2\cdot x_1}\right]e^{-i\omega t} \\
\psi^{(A)}(x_1, x_2, t) &\ =\frac{1}{\sqrt{2}} \left[ e^{i k_1\cdot x_1 +i k_2\cdot x_2}- e^{i k_1\cdot x_2 +i k_2\cdot x_1}\right]e^{-i\omega t}\\
\end{align}

となるね。ただし、

\begin{align}
E_1 = \frac{\hbar^2 k_1^2}{2m_e} \ , \ E_2 = \frac{\hbar^2 k_2^2}{2m_e} \ , \ E = E_1 + E_2 \ , \ \omega = \frac{E}{\hbar}
\end{align}

の関係があるよ。この波動関数は、粒子1と粒子2のそれぞれの位置 $x_1$ と $x_2$ を与えたときの振幅を与えるので、1次元上で波動関数の様子を可視化するには工夫が必要になるね。今回は、粒子1の位置をゼロ、すなわち $x_1 =0$ として、横軸を粒子2の位置 $x_2$、縦軸を波動関数の実部、虚部、絶対値の2乗の値とするね。なお、波動関数の絶対値の2乗

\begin{align}
|\psi^{(S)}(x_1, x_2, t)|^2 &\ = 1 + \cos\left[ (k_1 – k_2)(x_1 – x_2) \right]\\
|\psi^{(A)}(x_1, x_2, t)|^2 &\ = 1 – \cos\left[ (k_1 – k_2)(x_1 – x_2) \right]\\
\end{align}

は、各点における粒子の存在確率(今回、規格化が不十分だったので最大値が2になってしまったよ)を表すよ。2粒子の場合には相対位置のみ依存しているね。

計算結果

$E_1=1.0[{\rm eV}]$(右向き)と $E_2=1.5[{\rm eV}]$(右向き)

まずは、同じ方向へ進む2粒子の場合の計算結果を示すよ。粒子1の位置を $x_1 =0$ としているよ。対称関数の場合には粒子2はゼロ近傍にいる確率が高い反面、反対称波動関数の粒子2はゼロ近傍が一番低くなっているね。

対称関数

反対称関数

$E_1=1.0[{\rm eV}]$(右向き)と $E_2=1.5[{\rm eV}]$(左向き)

次は、反対方向へ進む2粒子の場合の計算結果を示すよ。粒子1の位置を $x_1 =0$ としているよ。異なるエネルギー(波数)の干渉なのに、粒子2の存在確率が時間に依存しないのは、ちょっと不思議だけれども、先に示した絶対値の2乗の表式は時間に依存しないから当たり前だよね。あと、絶対値の2乗の波数が大きくなったね。これは、波数 $k_1$ と $k_2$ の差が存在確率の波数に対応していることで理解できるね。

対称関数

反対称関数

$E_1=1.0[{\rm eV}]$(右向き)と $E_2=1.0[{\rm eV}]$(左向き)

最後に、同じエネルギーの2粒子が反対方向へ進む場合の計算結果を示すよ。粒子1の位置を $x_1 =0$ としているよ。

対称関数

反対称関数

粒子が1個の場合は単純な平面波だけれども、2個になった途端に複雑さが増していくね。


自由空間に存在する2個のスピン1/2粒子の運動を表す表式

前回、ヘリウム原子に存在する2つの電子の波動関数について解説しました。この表式は、原子核との相互作用や粒子同士の相互作用が無い場合にも対応することができるので、自由空間中の2つの粒子の運動を調べてみるよ。自由空間の固有状態は平面波 $\exp( i \boldsymbol{k}\cdot \boldsymbol{r} )$ なので、これを基底関数系として空間対称・空間反対称の波動関数を次のように表すよ。

\begin{align}
\psi^{(S)}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) &\ =\sum_{n_1,n_2} c_{n_1,n_2} \chi^{(S)}_{n_1,n_2}(\boldsymbol{r}_1, \boldsymbol{r}_2)e^{-i\omega t} =\sum_{n_1,n_2} c_{n_1,n_2} \left( e^{i \boldsymbol{k}_{n_1}\cdot \boldsymbol{r}_1 +i \boldsymbol{k}_{n_2}\cdot \boldsymbol{r}_2} + e^{i \boldsymbol{k}_{n_1}\cdot \boldsymbol{r}_2 +i \boldsymbol{k}_{n_2}\cdot \boldsymbol{r}_1}\right)e^{-i\omega t} \\
\psi^{(A)}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) &\ =\sum_{n_1,n_2} c_{n_1,n_2} \chi^{(A)}_{n_1,n_2}(\boldsymbol{r}_1, \boldsymbol{r}_2)e^{-i\omega t} = \sum_{n_1,n_2}
c_{n_1,n_2} \left( e^{i \boldsymbol{k}_{n_1}\cdot \boldsymbol{r}_1 +i \boldsymbol{k}_{n_2}\cdot \boldsymbol{r}_2}
– e^{i \boldsymbol{k}_{n_1}\cdot \boldsymbol{r}_2 +i \boldsymbol{k}_{n_2}\cdot \boldsymbol{r}_1}\right)e^{-i\omega t}\\
\end{align}

空間対称・空間反対称の波動関数は、それぞれ次のシュレーディンガー方程式を満たすよ。

\begin{align}
i\hbar \frac{\partial }{ \partial t} \psi^{(S)}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) &\ = \hat{H} \psi^{(S)}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) \\
i\hbar \frac{\partial }{ \partial t} \psi^{(A)}(\boldsymbol{r}_1, \boldsymbol{r}_2, t) &\ = \hat{H}
\psi^{(A)}(\boldsymbol{r}_1, \boldsymbol{r}_2, t)
\end{align}

\begin{align}
(\hat{H}_1+\hat{H}_2) \chi^{(S)}_{n_1,n_2}(\boldsymbol{r}_1, \boldsymbol{r}_2) = (E_{n_1}+E_{n_2}) \chi^{(S)}_{n_1,n_2}(\boldsymbol{r}_1, \boldsymbol{r}_2) \\
(\hat{H}_1+\hat{H}_2) \chi^{(A)}_{n_1,n_2}(\boldsymbol{r}_1, \boldsymbol{r}_2) = (E_{n_1}+E_{n_2})
\chi^{(A)}_{n_1,n_2}(\boldsymbol{r}_1, \boldsymbol{r}_2)
\end{align}

\begin{align}
E_{n_1} = \frac{\hbar^2 \boldsymbol{k}_{n_1}^2}{2m_e} \ , \ E_{n_2} = \frac{\hbar^2 \boldsymbol{k}_{n_2}^2}{2m_e} \ , \ E = E_{n_1} + E_{n_2} \ , \ \omega = \frac{E}{\hbar}
\end{align}

自由空間内で2つの粒子を運動させよう!

上記の表式を用いて、自由空間内で2つの粒子を1次元上で運動させてみよう。展開係数を、それぞれの粒子の中心波数を $ k_{10} $ と $ k_{20} $ とするガウス分布

\begin{align}
c_{n_1, n_2} = e^{-\frac{1}{2}\left(\frac{k_{n_1}-k_{n_{10}}}{2\sigma}\right)^2} e^{-\frac{1}{2}\left(\frac{k_{n_2}-k_{n_{20}}}{2\sigma}\right)^2}
\end{align}

とした2つの波束を考えよう。

\begin{align}
\psi^{(S)}(x_1, x_2, t) &\ =\sum_{n_1,n_2} \left( e^{i k_{n_1}x_1 +i
k_{n_2}x_2} + e^{i k_{n_1}x_2 +i k_{n_2}x_1}\right) e^{-i\omega t}e^{-\frac{1}{2}\left(\frac{k_{n_1}-k_{n_{10}}}{2\sigma}\right)^2}
e^{-\frac{1}{2}\left(\frac{k_{n_2}-k_{n_{20}}}{2\sigma}\right)^2} \\
\psi^{(A)}(x_1, x_2, t) &\ =\sum_{n_1,n_2} \left( e^{i k_{n_1}x_1 +i
k_{n_2}x_2} – e^{i k_{n_1}x_2 +i k_{n_2}x_1}\right) e^{-i\omega t}e^{-\frac{1}{2}\left(\frac{k_{n_1}-k_{n_{10}}}{2\sigma}\right)^2}
e^{-\frac{1}{2}\left(\frac{k_{n_2}-k_{n_{20}}}{2\sigma}\right)^2}
\end{align}

この積分を数値的に計算することで、2つの粒子の時間発展を計算することができるよ。そして、粒子1あるいは粒子2が位置 $x$ に存在する確率を次のとおりに定義するよ。

\begin{align}
\rho(x) \equiv \int |\psi^{(S)}(x, x_2, t)|^2 dx_2 + \int |\psi^{(S)}(x_1, x, t)|^2 dx_1
\end{align}

次回、対称波動関数と反対称波動関数の違いを可視化するよ。