【量子コンピュータを作ろう!】(3)量子ドットに束縛された電子に電磁波を加えたときのハミルトニアンと計算方法(ラビ振動)

今度は静電場の代わりに、量子ドットに束縛された電子に電磁波(直線偏光)を外部から与えて、基底状態と第一励起状態との間のラビ振動を確認するよ。電磁波を表すベクトルポテンシャルを $\boldsymbol{A}$ とした場合のハミルトニアンは次のとおりだね(参考)。

\begin{align}
\hat{H} = \hat{H}_0 + \hat{V}(t) = -\frac{\hbar^2}{2m_e} \frac{d^2}{dx^2} + \frac{e}{m_e} \boldsymbol{A}\cdot \hat{\boldsymbol{p}}
\end{align}

今回は1次元系で考えているので、ベクトルポテンシャルを $\boldsymbol{A}(t) = (A_x(t), 0, 0)$ として、

\begin{align}
A_x(t) = A_0 \cos(kx-\omega t)
\end{align}

と考えるよ。そして、このハミルトニアンの固有関数を外場が無いときの固有関数

\begin{align}
\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left[ k_n (x + \frac{L}{2}) \right] \ , \ E_n = \frac{\hbar^2 k_n^2}{2m_e} \ , \
k_n = \frac{\pi(n+1)}{L}
\end{align}

で展開して、その係数の値が時間に依存するとして展開するよ。

\begin{align}
\psi(x, t) = \sum\limits_{n=0} a_n(t) \varphi_n(x)
\end{align}

これを時間依存を考慮したシュレーディンガー方程式

\begin{align}
i \hbar \frac{\partial }{\partial t} \psi(x, t) = \hat{H} \psi(x, t)
\end{align}

に代入して、両辺に $\varphi^*_m(x)$ を掛けて全空間で積分するよ。すると、$a_m(t)$ に関する連立常微分方程式が得られるね。

\begin{align}
i \hbar \frac{d a_m(t)}{d t} = E^{(0)}_m a_m(t) + \sum\limits_{n=0} \langle m | \hat{V}(t) | n \rangle a_n(t)
\end{align}

$\langle m | \hat{V}(t) | n \rangle$ は、$\hat{p}_x/m_e = [\hat{H}_0, x ]/i\hbar$ を考慮すると

\begin{align}
\langle m | \hat{V}(t) | n \rangle \equiv \int_{-\frac{L}{2}}^{\frac{L}{2}} \varphi^*_m(x) \hat{V}(t)
\varphi_n(x)\, dx = \frac{eA_0}{m_e} \langle m | \cos(kx-\omega t) p_x | n \rangle = \frac{eA_0}{i\hbar} \langle m | \cos(kx-\omega t) [\hat{H}_0, x ] | n \rangle
\end{align}

と変形できて、波長が量子ドットのサイズよりも十分大きいと仮定すると、$kx \simeq 0$ と近似することができるので

\begin{align}
\langle m | \hat{V}(t) | n \rangle = \frac{eA_0}{i\hbar} \cos(\omega t) \left[ E^{(0)}_m – E^{(0)}_n \right] \langle m |
x | n \rangle
\end{align}

となるので、$a_m(t)$ に関する連立常微分方程式は

\begin{align}
i \hbar \frac{d a_m(t)}{d t} = E^{(0)}_m a_m(t) + \frac{eA_0}{i\hbar} \cos(\omega t)\sum\limits_{n=0} \left[ E^{(0)}_m – E^{(0)}_n \right] \langle m | x | n \rangle a_n(t)
\end{align}

となるね。$\langle m |x | n \rangle $ は時間に依存しないので、一度計算するだけでいいね。電磁波の角振動数が2準位間のエネルギー差 $\Delta E$ と表して $\omega = \Delta E / \hbar$ となるときに、2準位間を周期的に遷移するね。次回はこれをシミュレーションするよ。


【量子コンピュータを作ろう!】(2)量子ドットに束縛された電子に静電場を加えたときの固有状態の計算結果(シュタルク効果)

前回、定式化した量子ドットに束縛された電子に静電場を加えたときの固有状態の計算結果を示すよ。量子井戸の横幅は $L = 10 \times 10^9 [{\rm m}]$( $=10[{\rm nn}]$ )としているよ。

基底状態と第一励起状態の固有エネルギーの静電場の強度依存性

次のグラフは基底状態と第一励起状態の固有エネルギーの静電場の強度依存性だよ。基底状態は電場強度が強くなるにつれてエネルギーが下がっているのに対して、第一励起状態は電場強度が強くなるにつれて初めエネルギーが上がっていった後に下がって行く様子がわかるね。その分岐点となる電場強度はおおよそ $E_x = 5.0\times 10^6 [{\rm V/m}]$ であることがわかるね。静電場が加わることでエネルギーが上下する理由は電気双極子が誘起されていることを意味しているよ。エネルギーが下がるのは電気双極子モーメントが静電場の向きと平行となり、反対に上がるのは電気双極子モーメントが静電場の向きと反平行となっていると考えられるね。

基底状態と第一励起状態の固有関数の静電場強度別の空間依存性

次のグラフは基底状態の固有関数の静電場強度別の空間依存性だよ($E_x = 0.0\times 10^6 \sim 1.0\times 10^6 [{\rm V/m}]$)。静電場が強くなるほど電子の分布がx軸の正方向に偏っていくね。つまり、電気双極子モーメントが大きくなっていることに対応しているよ。

次のグラフは第一励起状態の固有関数の静電場強度別の空間依存性だよ($E_x = 0.0\times 10^6 \sim 10.0\times 10^6 [{\rm V/m}]$)。第一励起状態はエネルギー準位の電場強度依存性からも分かる通り、$E_x = 5.0\times 10^6 [{\rm V/m}]$ までは、電場強度に応じて電子分布はx軸の負方向に偏っていくね。それよりも大きな電場を加えると、反対にx軸の正方向に偏っていくね。

以上の結果より、外部から静電場を加えることで、基底状態と第一励起状態は異なる向きの電気双極子モーメントが誘起されることがわかったね(シュタルク効果)。これを利用することで、基底状態と第一励起状態の区別をつけることができるよ。次回は、この基底状態と第一励起状態を入れ替えるラビ振動を確かめるよ。


【量子コンピュータを作ろう!】(1)量子ドットに束縛された電子に静電場を加えたときのハミルトニアンと計算方法(シュタルク効果)


 量子コンピュータを勉強のために、シミュレーションが一番簡単そうな量子ドットに束縛された電子のエネルギー準位を量子ビットとして扱うタイプを念頭に置いて、量子コンピュータを実現するために必要な素子の具体的な物理系のシミュレーション(数値実験)を行っていくよ。今回は、1次元版量子ドット(井戸型ポテンシャル)に束縛された電子の状態を変化させるために静電場を加えたときの固有状態を調べるよ。

静電場を加えたハミルトニアンとシュレディンガー方程式

井戸型ポテンシャルに束縛された電子に外部からx軸方向の静電場 $E_x$ を加えると、電子は静電場によって空間分布が変化することが考えられるね。量子井戸の底のポテンシャルエネルギーを0としたときのハミルトニアンは次のとおりだね。

\begin{align}
\hat{H} = \hat{H}_0 + \hat{V} = -\frac{\hbar^2}{2m_e} \frac{d^2}{dx^2} – e E_x x \\
\end{align}

$\hat{V}$ は静電場によるポテンシャルエネルギーだよ。$\hat{H}_0$ は 外場無し($E_x = 0$)のときのハミルトニアンで、井戸の深さが無限大のときには固有関数 $\varphi_n(x)$ を用いて、エネルギー固有状態 $\hat{H}_0 \varphi_n(x) = E_n \varphi_n(x)$ を満たすよ。固有関数と固有エネルギーは

\begin{align}
\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left[ k_n (x + \frac{L}{2}) \right] \ , \ E_n = \frac{\hbar^2 k_n^2}{2m_e} \ , \ k_n = \frac{\pi(n+1)}{L}
\end{align}

だね。$k_n$ は波数だよ。静磁場が加わったときの固有関数と固有エネルギーをそれぞれ $\varphi(x)$ と $E$ と表したとき、シュレディンガー方程式は

\begin{align}
\hat{H} \varphi(x)= E \varphi(x) \\
\end{align}

となるけれど、この $\varphi(x)$ を $\varphi_n(x)$ を用いて

\begin{align}
\varphi(x) = \sum\limits_{n=0} a_n \varphi_n(x)
\end{align}

と展開して、固有関数と固有エネルギーを計算するよ。

固有関数と固有エネルギーの計算方法

シュレディンガー方程式の両辺に $\varphi^*_m(x)$ を掛けて全空間で積分するよ。固有関数の直交関係を考慮すると、シュレディンガー方程式は

\begin{align}
E^{(0)}_m a_m + \sum\limits_{n=0} \langle m | \hat{V} | n \rangle a_n = E a_m
\end{align}

という展開係数 $ a_n $ に関する連立方程式になるね。ただし、$\langle m | \hat{V} | n \rangle $ は

\begin{align}
\langle m | \hat{V} | n \rangle \equiv \int_{-\frac{L}{2}}^{\frac{L}{2}} \varphi^*_m(x) \hat{V} \varphi_n(x)\, dx
\end{align}

だよ。連立方程式は行列で表すとわかりやすくなるので、エネルギーの小さい順に固有関数の係数を並べると次のようになるよ。

\begin{align}
\left(\matrix{ E^{(0)}_0 +\langle 0 | \hat{V} | 0 \rangle & \langle 1 | \hat{V} | 0 \rangle & \langle 2 | \hat{V} | 0 \rangle & \langle 3 | \hat{V} | 0 \rangle & \langle 4 | \hat{V} | 0 \rangle & \cdots \cr
\langle 0 | \hat{V} | 1 \rangle & E^{(0)}_1 + \langle 1 | \hat{V} | 1 \rangle & \langle 1 | \hat{V} | 2 \rangle & \langle 1 | \hat{V} | 3 \rangle &\langle 1 | \hat{V} | 4 \rangle &\cdots \cr
\langle 0 | \hat{V} | 2 \rangle & \langle 1 | \hat{V} | 2 \rangle & E^{(0)}_2 + \langle 2 | \hat{V} | 2 \rangle & \langle 3 | \hat{V} | 2 \rangle& \langle 4 | \hat{V} | 2 \rangle& \cdots \cr
\langle 0 | \hat{V} | 3 \rangle & \langle 1 | \hat{V} | 3 \rangle & \langle 2 | \hat{V} | 3 \rangle & E^{(0)}_3 + \langle 3 | \hat{V} | 3 \rangle& \langle 4 | \hat{V} | 3 \rangle& \cdots \cr
\langle 0 | \hat{V} | 4 \rangle & \langle 1 | \hat{V} | 4 \rangle & \langle 2 | \hat{V} | 4 \rangle & \langle 3 | \hat{V} | 4 \rangle& E^{(0)}_4 + \langle 4 | \hat{V} | 4 \rangle& \cdots \cr
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots } \right) \left(\matrix{ a_{0} \cr a_{1}\cr a_{2} \cr a_{3} \cr a_{4} \cr \vdots }\right) = E \left(\matrix{ a_{0} \cr a_{1}\cr a_{2} \cr a_{3} \cr a_{4} \cr \vdots }\right)
\end{align}

まさに行列表した固有値方程式の形になっているのがわかるね。 これで固有値と固有ベクトルを計算すると、固有値はそのまま外場が加えられた場合のエネルギー、固有ベクトルがそのまま展開係数の値そのものになるね。次回は、この計算結果を示すよ。