【量子コンピュータを作ろう!】(10)2重量子ドットに束縛された電子に静電場を加えたときの固有状態の計算結果(シュタルク効果)


前回計算した2重量子ドットに束縛された電子の固有状態にさらに外部から静電場を加えたときの様子をシミュレーションするよ(静電場の向き:x軸の正方向)。電子分布が偏ってエネルギー準位がシフトするシュタルク効果が期待できるね。2重井戸の場合はどんな形になるのかな。ハミルトニアンのポテンシャル項は次のとおりだよ。

\begin{align}
V(x) = \left\{ \matrix{ \infty & x \leq -\frac{L}{2} \cr e E_x x & -\frac{L}{2} \leq x\leq -\frac{W}{2} \cr V & -\frac{W}{2}
\leq x\leq \frac{W}{2} \cr e E_x x& \frac{W}{2} \leq x\leq \frac{L}{2} \cr \infty & \frac{L}{2} \leq x} \right.
\end{align}

なお、具体的なパラメータとして、量子井戸全体のサイズを $L = 10[{\rm nm}]$、真ん中の壁のサイズを $W = 2[{\rm nm}]$、壁の高さを $0.3[{\rm eV}]$ として、静電場の強さを $0 \sim2.0\times10^{6}[{\rm V/m}]$ と $0.1$ ずつ変化させてみたよ。まずは、固有状態から見てみよう!

固有状態の空間分布

基底状態と第一励起状態

次の図は、静電場の強さを $0 \sim2.0\times10^{6}[{\rm V/m}]$ と $0.1$ ずつ変化させたときの基底状態(左)と第一励起状態(右)の空間分布だよ。静電場を少し加えただけで、電子は片端に偏っているね。ちょっとした外部静電場で電気双極子が生じていると言えるね。興味深いことに、真ん中に壁が無い場合の電気双極子と比較して、かなり弱い電場強度で同等の分極率(100倍)が得られているね(壁無し:$10\times10^{6}$ で基底状態のピーク位置が$2.7[{\rm nm}]$ 程度、壁有り:$0.1\times10^{6}$ でピーク位置が$2.7[{\rm nm}]$ 程度)。特に壁無しの第一励起状態は分極率は小さそうだったので、かなりの差だと言えるね。

第二励起状態と第三励起状態

次の図は、静電場の強さを $0 \sim2.0\times10^{6}[{\rm V/m}]$ と $0.1$ ずつ変化させたときの第二励起状態(左)と第三励起状態(右)の空間分布だよ。静電場を $0.3 \times10^{6}[{\rm V/m}]$程度加えただけで、電子は片端に偏っているね。基底状態に対してより強い電場が必要なのは、もともとエネルギーが高い状態だからだね。

エネルギー準位の静電場依存性

次の図は下から6つのエネルギー準位の壁の高さ依存性だけれども、通常のシュタルク効果と同様、静電場によって縮退している状態が解けて、電場強度に比例した大きさのエネルギーシフトが見られるね。先に示したとおり、僅かな静電場で電気双極子が得られるので、この2重量子井戸をそのまま1量子ビットに用いることで、量子ビット間の相互作用を強めることができる可能性があるね。

次回はいよいよ電子2個に進むよ。まずは1重の量子井戸に2個の電子を束縛したときの固有状態を計算するよ。


【量子コンピュータを作ろう!】(9)2重量子ドットに束縛された電子の固有状態の計算結果


前回導出した2重量子ドットに束縛された電子の固有状態の計算方法を用いて計算した結果を示すよ。具体的なパラメータとして、量子井戸全体のサイズを $L = 10[{\rm nm}]$、真ん中の壁のサイズを $W = 2[{\rm nm}]$ として、壁の高さを $0 \sim 0.5[{\rm eV}]$ と $0.025$ ずつ変化させてみたよ。まずは、固有状態から見てみよう!

固有状態の空間分布

基底状態

次の図は、壁の高さを $0 \sim 0.5[{\rm eV}]$ と $0.025$ ずつ変化させたときの基底状態の空間分布だよ。壁の高さが高くなるほど電子分布のピークは両サイドの中心に移動していく様子が分かるね。ちなみに、基底状態の固有エネルギーは約 $0.004[{\rm eV}]$ だよ。

第一励起状態

次の図は、壁の高さを $0 \sim 0.5[{\rm eV}]$ と $0.025$ ずつ変化させたときの第一励起状態の空間分布だよ。壁の高さが高くなるほど電子分布のピークは両サイドの中心に移動していくけれども、もともと第一励起状態は sin関数的なので変化は小さいね。ちなみに、基底状態の固有エネルギーは $0.015[{\rm eV}]$ 程度だよ。

第二励起状態

次の図は、壁の高さを $0 \sim 0.5[{\rm eV}]$ と $0.025$ ずつ変化させたときの第二励起状態の空間分布だよ。基底状態と同様、壁の高さが高くなるほど電子分布のピークは両サイドの中心に移動していく様子が分かるね。ちなみに、基底状態の固有エネルギーは約 $0.034[{\rm eV}]$ だよ。

第三励起状態

次の図は、壁の高さを $0 \sim 0.5[{\rm eV}]$ と $0.025$ ずつ変化させたときの第三励起状態の空間分布だよ。第一励起状態と同様、壁の高さが高くなるほど電子分布のピークは両サイドの中心に移動していくけれども、もともと第三励起状態は sin関数的なので変化は小さいね。ちなみに、基底状態の固有エネルギーは約 $0.060[{\rm eV}]$ だよ。

エネルギー準位の壁の高さ依存性

先の固有状態からわかるとおり、壁の高さを高くするほど基底状態と第一励起状態、また第二励起状態と第三励起状態が一致していくね。これは、壁が高くなるほど、2つの領域はそれぞれ孤立していくことに起因するね。次の図は下から6つのエネルギー準位の壁の高さ依存性だけれども、このことはグラフにも現れているね。おおよそ壁の高さが $0.3[{\rm eV}]$ で基底状態と第一励起状態、第二励起状態と第三励起状態の固有エネルギーが概ね一致しているね。ちなみに、横の点線 $E_0=0.023[{\rm eV}]$ と $E_1=0.094[{\rm eV}]$ は、壁の高さが無限大とした場合の固有エネルギーの値だよ。

次回はさらに静電場を加えてみるよ。


【量子コンピュータを作ろう!】(7)2重量子ドットに束縛された電子の固有状態の計算方法(2重量子井戸型ポテンシャル)


1量子ビットに対応する量子ドットに対するシミュレーションをこれまでやってきたけれども、2量子ビットに対応する2重量子ドットに束縛された電子の固有状態を調べるよ。具体的には右図のように1次元の幅 $L$ の量子井戸の真ん中に幅 $W$ のポテンシャル障壁を作って、2個の電子がそれぞれに配置されるような状況を考えたいけれども、今回はその準備として、電子が1個の場合を固有状態の計算方法を示すよ。

固有状態の計算方法

図のような無限に高い井戸型ポテンシャル内に壁があるような場合、ポテンシャルの大きさによって空間領域を3つに分けて、それぞれの領域$(\rm I), (II), (III)$で右向きと左向きの平面波が存在すると仮定して、

\begin{align}
\varphi^{(\rm I)}_n (x) &\ = A e^{ik^{(\rm I)}(x+\frac{W}{2})} + B e^{-ik^{(\rm I)}(x+\frac{W}{2})} \ \ \ (-\frac{L}{2} \leq x\leq -\frac{W}{2} ) \\
\varphi^{(\rm II)}_n (x) &\ = C e^{ik^{(\rm II)}x} + D e^{-ik^{(\rm II)}x} \ \ \ (-\frac{W}{2} \leq x\leq \frac{W}{2} ) \\
\varphi^{(\rm III)}_n (x) &\ = E e^{ik^{(\rm III)}(x-\frac{W}{2})} + F e^{-ik^{(\rm III)}(x-\frac{W}{2})} \ \ \ (\frac{W}{2} \leq x\leq \frac{L}{2} ) \\
\end{align}

と表しておいて、各領域間の境界条件

\begin{align}
\varphi^{(\rm I)}_n (-\frac{L}{2}) = 0 \ &\ , \ \varphi^{(\rm III)}_n (\frac{L}{2}) = 0\\
\varphi^{(\rm I)}_n (-\frac{W}{2}) = \varphi^{(\rm II)}_n (-\frac{W}{2}) \ &\ , \ \left.\frac{d\varphi^{(\rm I)}_n (x)}{d x}\right|_{x=-\frac{W}{2}} = \left.\frac{d \varphi^{(\rm II)}_n (x)}{d x}\right|_{x=-\frac{W}{2}} \\
\varphi^{(\rm II)}_n (\frac{W}{2}) = \varphi^{(\rm III)}_n (\frac{W}{2}) \ &\ , \ \left.\frac{d\varphi^{(\rm II)}_n (x)}{d
x}\right|_{x=\frac{W}{2}} = \left.\frac{d \varphi^{(\rm III)}_n (x)}{d x}\right|_{x=\frac{W}{2}}
\end{align}

を課すことで、係数($A, B, C, D, E, F$)の関係を導出するよ。ただし、それぞれの領域の平面波の波数は電子のエネルギー $E$ に対して

\begin{align}
k^{(\rm I)} = \frac{\sqrt{2m_eE}}{\hbar} \ , \ k^{(\rm II)} = \frac{\sqrt{2m_e(E-V)}}{\hbar} \ , \ k^{(\rm III)} = \frac{\sqrt{2m_eE}}{\hbar}
\end{align}

を満たすよ。そのため、$k^{(\rm I)} = k^{(\rm III)}$ であることがわかるね。

(1)$x= -L/2$ の境界条件

領域(I)の波動関数 $\varphi^{(\rm I)}_n (x)$ に$x= -L/2$ の境界条件を課してみよう!

\begin{align}
A e^{-ik^{(\rm I)}(\frac{L}{2} – \frac{W}{2})} + B e^{ik^{(\rm I)}(\frac{L}{2} – \frac{W}{2})} &\ = 0 \\
&\ \downarrow \\
(A+B) \cos\left[k^{(\rm I)}\left(\frac{L}{2} – \frac{W}{2}\right)\right] + i (-A+B) \sin\left[k^{(\rm I)}\left(\frac{L}{2} – \frac{W}{2}\right)\right] &\ = 0\\
\end{align}

となることから、これを満たす非自明な解($A=0, B=0$以外の解)は、

\begin{align}
A = B \ , \ k^{(\rm I)}\left(\frac{L}{2} – \frac{W}{2}\right) = \pi \left(n +\frac{1}{2} \right)
\end{align}

あるいは

\begin{align}
A = -B \ , \ k^{(\rm I)}\left(\frac{L}{2} – \frac{W}{2}\right) = \pi(n+1)
\end{align}

を満たす必要があるね($n=0,1,2,3,\cdots$)。両者はそれぞれ

\begin{align}
\varphi^{(\rm I)}_n (x) &\ = 2A \cos \left[ \frac{ 2\pi\left(n +\frac{1}{2} \right)}{L-W} \left(x +\frac{W}{2} \right) \right] = -2A \sin \left[ \frac{ 2\pi\left(n +\frac{1}{2} \right)}{L-W} \left(x +\frac{L}{2} \right) – \pi n\right] \\
\varphi^{(\rm I)}_n (x) &\ = 2iB \sin \left[ \frac{2\pi (n+1)}{L – W} \left(x +\frac{W}{2} \right) \right] = -2iB \sin \left[ \frac{2\pi (n+1)}{L – W} \left(x +\frac{L}{2} \right) – \pi (n+1) \right]
\end{align}

となるけれども、$\sin$ 関数内の波数に対応する部分に着目すると、前者の($2n+1$)は奇数、後者のの($2(n+1)$)は偶数を表すので、結局は両者を合わせると0を含めた全自然数となるね。係数は改めて置き直して、

\begin{align}
\varphi^{(\rm I)}_n (x) &\ = A_n \sin \left[ k^{(\rm I)}_n \left(x +\frac{L}{2} \right) \right] \ , \ k^{(\rm I)}_n = \frac{\pi(n+1)}{L- W}
\end{align}

となるね($n=1,2,3,\cdots$)。この関係からエネルギーも離散化されて

\begin{align}
E_n = \frac{\hbar^2 {k^{(I)}_n}^2}{2m_e} = \frac{\hbar^2}{2m_e} \left[ \frac{\pi(n+1)}{L- W}\right]^2
\end{align}

であることもわかるね。

(2)$x= L/2$ の境界条件

領域(III)の波動関数 $\varphi^{(\rm III)}_n (x)$ に$x= L/2$ の境界条件を課した結果も、先と全く同様となるね。対称性を考慮してかつ係数を改めて $F_n$ と置いておくよ。

\begin{align}
\varphi^{(\rm III)}_n (x) &\ = F_n \sin \left[ k^{(\rm III)}_n \left(x -\frac{L}{2} \right) \right] \ , \ k^{(\rm III)}_n = \frac{\pi(n+1)}{L- W}
\end{align}

(3)$x= -\frac{W}{2}$ の境界条件

領域(I)と領域(II)の2つの波動関数の境界条件を課してみよう!

\begin{align}
\varphi^{(\rm I)}_n (-\frac{W}{2}) = \varphi^{(\rm II)}_n (-\frac{W}{2}) \ &\ \longrightarrow \ A_n \sin \left[ k^{(\rm I)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] = C e^{-ik^{(\rm II)}\frac{W}{2}} + D e^{ik^{(\rm II)}\frac{W}{2}} \\
\left.\frac{d\varphi^{(\rm I)}_n (x)}{d x}\right|_{x=-\frac{W}{2}} = \left.\frac{d \varphi^{(\rm II)}_n (x)}{d x}\right|_{x=-\frac{W}{2}} \ &\ \longrightarrow \ A_n k^{(\rm I)}_n \cos \left[ k^{(\rm I)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] = i C k^{(\rm II)} e^{-ik^{(\rm II)}\frac{W}{2}} – iD k^{(\rm II)} e^{ik^{(\rm II)}\frac{W}{2}}
\end{align}

前者の両辺に $i k^{(\rm II)}$ を掛け算した後に、前者と後者を足し引きすると、

\begin{align}
C_n &\ = \frac{A_n}{2i} e^{ik_n^{(\rm II)}\frac{W}{2}} \left\{i\sin \left[ k^{(\rm I)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] + \frac{k^{(\rm I)}_n}{k_n^{(\rm II)}} \cos \left[ k^{(\rm I)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] \right\} \\
&\ = \frac{A_n}{2i} e^{ik_n^{(\rm II)}\frac{W}{2}} \left\{ i\cos \left( \frac{\pi n}{2}\right) – \frac{k^{(\rm I)}_n}{k_n^{(\rm II)}} \sin \left( \frac{\pi n}{2}\right)\right\} \\
D_n &\ = \frac{A_n }{2i} e^{-ik_n^{(\rm II)}\frac{W}{2}} \left\{i\sin \left[ k^{(\rm I)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] – \frac{k^{(\rm I)}_n}{k_n^{(\rm II)}} \cos \left[ k^{(\rm I)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] \right\} \\
&\ = \frac{A_n}{2i} e^{-ik_n^{(\rm II)}\frac{W}{2}} \left\{ i\cos \left( \frac{\pi n}{2}\right) + \frac{k^{(\rm I)}_n}{k_n^{(\rm II)}} \sin \left( \frac{\pi n}{2}\right)\right\}
\end{align}

という風に $A_n$で表すことができるね。ちなみに、波数 $k^{(\rm II)}_n$ は離散化したエネルギーと直接関係があるね。

\begin{align}
k^{(\rm II)}_n = \frac{\sqrt{2m_e(E_n – V)}}{\hbar}
\end{align}

$k^{(\rm II)}_n = 0$ の場合

電子のエネルギーがちょうど壁のポテンシャルエネルギーと同じ場合、領域(II)の波数は $k^{(\rm II)}_n = 0$ となるね。その場合の扱いは別途行う必要があるね。

\begin{align}
A_n \cos \left( \frac{\pi n}{2}\right) &\ = C_n + D_n \\
-A_n k^{(\rm I)}_n \sin\left( \frac{\pi n}{2}\right) &\ = 0
\end{align}

となるね。

(4)$x= \frac{W}{2}$ の境界条件

最後に、領域(II)と領域(III)の2つの波動関数の境界条件を課してみよう!

\begin{align}
\varphi^{(\rm II)}_n (\frac{W}{2}) = \varphi^{(\rm III)}_n (\frac{W}{2}) \ &\ \longrightarrow \ C e^{ik^{(\rm II)}\frac{W}{2}} + D e^{-ik^{(\rm II)}\frac{W}{2}} = F_n \sin \left[ k^{(\rm III)}_n \left(\frac{W}{2} – \frac{L}{2} \right) \right] \\
\left.\frac{d\varphi^{(\rm II)}_n (x)}{d x}\right|_{x=\frac{W}{2}} = \left.\frac{d \varphi^{(\rm III)}_n (x)}{d x}\right|_{x=\frac{W}{2}} \ &\ \longrightarrow \ iC k^{(\rm II)} e^{ik^{(\rm II)}\frac{W}{2}} – iD k^{(\rm II)} e^{-ik^{(\rm II)}\frac{W}{2}} = F_n k^{(\rm III)}_n \cos \left[ k^{(\rm III)}_n \left(\frac{W}{2} – \frac{L}{2} \right) \right]
\end{align}

前者の両辺に $i k^{(\rm II)}$ を掛け算した後に、前者と後者を足し引きすると、

\begin{align}
C_n &\ = \frac{F_n}{2i} e^{-ik_n^{(\rm II)}\frac{W}{2}} \left\{-i\sin \left[ k^{(\rm III)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] + \frac{k^{(\rm III)}_n}{k_n^{(\rm II)}} \cos \left[ k^{(\rm III)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] \right\} \\
&\ = \frac{F_n}{2i} e^{-ik_n^{(\rm II)}\frac{W}{2}} \left\{ -i\cos \left( \frac{\pi n}{2}\right) – \frac{k^{(\rm III)}_n}{k_n^{(\rm II)}} \sin \left( \frac{\pi n}{2}\right)\right\} \\
D_n &\ = \frac{F_n }{2i} e^{ik_n^{(\rm II)}\frac{W}{2}} \left\{-i\sin \left[ k^{(\rm III)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] – \frac{k^{(\rm III)}_n}{k_n^{(\rm II)}} \cos \left[ k^{(\rm III)}_n \left(-\frac{W}{2} + \frac{L}{2} \right) \right] \right\} \\
&\ = \frac{F_n}{2i} e^{ik_n^{(\rm II)}\frac{W}{2}} \left\{ -i\cos \left( \frac{\pi n}{2}\right) + \frac{k^{(\rm III)}_n}{k_n^{(\rm II)}} \sin \left( \frac{\pi n}{2}\right)\right\}
\end{align}

という風に $F_n$で表すことができるね。

$k^{(\rm II)}_n = 0$ の場合

今回も電子のエネルギーがちょうど壁のポテンシャルエネルギーと同じになる場合の $k^{(\rm II)}_n = 0$ の扱いを別途行う必要があるね。

\begin{align}
– F_n \cos \left( \frac{\pi n}{2}\right) &\ = C_n + D_n \\
-F_n k^{(\rm III)}_n \sin\left( \frac{\pi n}{2}\right) &\ = 0
\end{align}

となるけれども、これだけでは $C_n$ と $D_n$ は決定できないね。

係数の関係を決定しよう!

今回、指数 $n$ によって係数の位相が異なるので、個別に計算する必要があるので、まずは $n=0$ の場合を計算してみるよ。$C_0, D_0$ と $A_0$ の関係は次のとおりだよ。

\begin{align}
C_0 &\ = \frac{A_0}{2} e^{ik^{(II)}_0 \frac{W}{2}} \\
D_0 &\ = \frac{A_0}{2} e^{-ik^{(II)}_0 \frac{W}{2}}
\end{align}

一方、$C_0, D_0$ と $F_0$ の関係は

\begin{align}
C_0 &\ = -\frac{F_0}{2} e^{-ik^{(II)}_0 \frac{W}{2}} \\
D_0 &\ = -\frac{F_0}{2} e^{ik^{(II)}_0 \frac{W}{2}}
\end{align}

となるけれども、先の結果と合わせて $F_0$ と $A_0$ の関係を求めると、考えると自明だけれども面白いことがわかるよ。$C_0$ を消去して得られる関係と、$D_0$ を消去して得られる関係はそれぞれ

\begin{align}
F_0 &\ = -A_0 e^{ik^{(II)}_0 W}\\
F_0 &\ = -A_0 e^{-ik^{(II)}_0 W}
\end{align}

となることから、なんと、$F_0$ と $A_0$ が0以外の解を持つには、

\begin{align}
k^{(II)}_0 W = 2\pi m \ \longrightarrow \ \frac{ \sqrt{2m_e (E_0 – V)} }{\hbar} W = 2\pi m
\end{align}

と、$V$ または $W$ に制限が加わることを意味するね($m = 0, 1, 2, \cdots$ )。これは「領域(II)の両端でうまく境界条件を満たすには、位相の変化分(波数×距離)が特定の条件を満たす必要がある」ことを意味しているね。よく考えれば自明だけれども、ちょっと意外だったね。次回は、この2重井戸の固有状態を可視化するよ。