水素原子に静電場を急激に加えたときのシミュレーション結果

前回解説した水素原子に静電場を急激に加えたときの緩和時間シミュレーションの結果を示すよ。次の図は初期状態として $\varphi_{200}$ 100%の状態に $ E_z = 10^{9}[\rm{V/m}]$ の静電場を急に加えたときの $\varphi_{200}$ と $\varphi_{210}$ の存在確率の時間経過だよ。$\varphi_{200}$ 100%の状態と $\varphi_{210}$ 100%の状態が一定の周期で交互に現れるね。

考察:単振動的な運動をする理由

$\varphi_{200}$ と $\varphi_{210}$ は静電場中ではエネルギーが高い一方で、その50%づつの混合状態が一番エネルギーが低いのだよね。つまり、下の図で示したとおり、エネルギーの高い初期状態 $\varphi_{200}$ 100% からスタートして、エネルギー低い方に状態が変化して行くけれども、一番低いところで止まらずに反対の $\varphi_{210}$ 100% の状態まで変化していっているね。もし、エネルギーが散逸するメカニズムがあれば、最低エネルギーに落ち着くよね。きっと。


水素原子に静電場を急激に加えたときの緩和時間シミュレーション方法

水素原子に電磁波を加えるシミュレーションの前に、数値計算の確認を兼ねて、水素原子に静電場を急激に掛けたときの緩和時間をシミュレーションしてみるよ。水素原子に静電場を加えた場合、電場によって固有関数が歪むシュタルク効果を以前解説したね。今回は、時刻 $t<0$ では外場無しの状態から、$t\geq0$ で急に $V_0$ の電場を加えたときの状態変化の様子をシミュレーションするよ。数値計算の手順をいかに解説するね。ハミルトニアンを外場無しと時間に依存するポテンシャル項に分けるね。

\begin{align}
\hat{H} = \hat{H}_0 + \hat{V}(\boldsymbol{r}, t)
\end{align}

$\hat{V}(t)$ を次の通りとするよ(電場の向きをz軸方向とするね)。

\begin{align}
\hat{V}(\boldsymbol{r}, t) = \left\{ \matrix{ 0 & (t<0) \cr eE_zz & (t\geq 0)} \right. \end{align}

時刻 $t$ の波動関数を $\Psi(\boldsymbol{r}, t) $ を外場無しの場合の固有状態 $\varphi_{nlm}$ で展開して、展開係数が時間に依存すると考えるよ。

\begin{align}
\Psi(\boldsymbol{r}, t) = \sum\limits_{nlm} a_{nlm}(t) \varphi_{nlm}(\boldsymbol{r})
\end{align}

これを元のシュレディンガー方程式 $i\hbar \frac{\partial}{\partial t} \Psi(\boldsymbol{r}, t) = \hat{H} \Psi(\boldsymbol{r}, t) $ に代入して、両辺に $\varphi_{n’l’m’}^*$ を掛けて全空間で積分するよ。

\begin{align}
i\hbar \frac{d a_{n’l’m’}(t)}{dt} = E_{n’} a_{n’l’m’}(t)+ \sum\limits_{nlm} a_{nlm}(t) \int \varphi_{n’l’m’}^* \hat{V}(\boldsymbol{r}, t) \varphi_{nlm}dV
\end{align}

ちょっと整理して、

\begin{align}
\frac{d a_{n’l’m’}(t)}{dt} = \frac{1}{ i\hbar } \left[E_{n’} a_{n’l’m’}(t) + \sum\limits_{nlm} V^{n’l’m’}_{nlm}(t)\, a_{nlm}(t) \right]
\end{align}

という形をしているね。つまり、$a_{n’l’m’}(t)$ の時間変化は、その時刻の全固有状態の展開係数の値 $a_{nlm}(t)$ と、ポテンシャル積分項の値から計算できることを意味しているね。このポテンシャル積分項の具体的な表記は

\begin{align}
V^{n’l’m’}_{nlm}(t) \equiv \int_0^\infty\!\!\! r^2 dr \int_0^\pi \!\!\! \sin\theta d\theta \int_0^{2\pi} \!\!\! d\phi \left[\varphi_{n’l’m’}^* \hat{V}(\boldsymbol{r}, t)\,\varphi_{nlm} \right] = \left\{ \matrix{ 0 & (t<0) \cr eE_z \int_0^\infty\!\!\! r^2 dr \int_0^\pi \!\!\! \sin\theta d\theta \int_0^{2\pi} \!\!\! d\phi \left[\varphi_{n'l'm'}^* z\,\varphi_{nlm} \right] & (t\geq 0)} \right. \end{align}

となるね。このポテンシャル積分項を用いて、先の $ a_{n’l’m’}(t) $ の常微分方程式を数値的に計算すれば良いね。次回は実際にルンゲ・クッタ法を用いて、緩和時間をシミュレーションしてみるよ。


水素原子に電磁波(古典・直線偏光)を加える場合のハミルトニアン

任意の電磁場中を運動する電子のハミルトニアンは「静磁場が加わる場合のハミルトニアンを復習しよう!」で示したとおりだね。ベクトルポテンシャルを $\boldsymbol{A}$、スカラーポテンシャルを $\phi$ とした場合、

\begin{align}
\hat{H} = \frac{1}{2m_e} (\hat{\boldsymbol{p}} + e \boldsymbol{A})^2 -e \phi
\end{align}

となるね。水素原子に束縛された電子を考えると、クーロンゲージを採用して

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e}{m_e}\,\boldsymbol{A}\cdot \boldsymbol{p} + \frac{e^2 \boldsymbol{A}^2}{2m_e}
\end{align}

となるね。$\hat{H}_0$ は外場が無い場合の水素原子に束縛された電子のハミルトニアン

\begin{align}
\hat{H}_0 = \frac{\hat{\boldsymbol{p}}^2}{2m_e} – \frac{e^2}{ 4\pi\epsilon_0} \, \frac{1}{r}
\end{align}

だよ。電磁波の場合には、このベクトルポテンシャル $\boldsymbol{A}(t)$ が時間に依存するんだね。さらに、スピンも考慮するならば、スピンのゼーマン項を加えて

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e}{m_e}\,\boldsymbol{A}\cdot \boldsymbol{p} + \frac{e}{m_e} \hat{\boldsymbol{S}}\cdot \boldsymbol{B} + \frac{e^2 \boldsymbol{A}^2}{2m_e}
\end{align}

だね。今回、電磁波の進行方向をx軸として、磁場成分をy軸、電場成分をz軸となるように、ベクトルポテンシャルを

\begin{align}
\boldsymbol{A} = \left(0, 0, A_0 \cos(kx-\omega t) \right)
\end{align}

と与えると、電場と磁場は次のようになるね。

\begin{align}
\boldsymbol{E} &\ = -\frac{\partial \boldsymbol{A}}{\partial t} =\left(0, 0, – \omega A_0 \sin(kx-\omega t) \right)\\
\boldsymbol{B} &\ = \nabla \times \boldsymbol{A} =\left(0, k A_0 \sin(kx-\omega t), 0 \right)
\end{align}

電磁波による状態遷移の数値計算

電子の状態遷移を議論するには、時間に依存したシュレディンガー方程式

\begin{align}
i\hbar\frac{\partial}{\partial t} \psi(\boldsymbol{r}, t) = \hat{H} \psi(\boldsymbol{r}, t)
\end{align}

を解けばいいんだね。まずは波動関数 $\psi(\boldsymbol{r}, t) $ を外場無し固有状態で

\begin{align}
\psi(\boldsymbol{r}, t) = \sum\limits_{n, l, m, s_z} a_{nlms_z}(t)\, \varphi_{nlms_z}
\end{align}

のように展開して、展開係数が時間に依存すると考えることができるね。次に、$\hat{H} = \hat{H}_0 + \hat{V}(t)$ とおいてこれをシュレディンガー方程式に代入すると

\begin{align}
\sum\limits_{n, l, m, s_z}i\hbar\frac{d a_{nlms_z}(t)}{d t} \, \varphi_{nlms_z} = \sum\limits_{n, l, m, s_z}\left[E_n + \hat{V}(t)\right] a_{nlms_z}(t)\, \varphi_{nlms_z}
\end{align}

となるね。両辺に $\varphi_{n’l’m’s_z’}^*$ を掛けて全空間で積分すると展開係数に関する連立常微分方程式が得られるね。

\begin{align}
i\hbar\frac{d a_{n’l’m’s_z’}(t)}{d t} = E_{n’}a_{n’l’m’s_z’}(t) + \sum\limits_{n, l, m, s_z} a_{nlms_z}(t) \int \varphi_{n’l’m’s_z’}^* \hat{V}(t)\varphi_{nlms_z} dV
\end{align}

この $\hat{V}(t)$ に電磁波との相互作用を与えるわけだね。$\hat{\boldsymbol{p}}/m_e = -i [\hat{H}_0,\boldsymbol{r} ]/\hbar$ を考慮して、$\hat{V}(t)$ の空間積分の項を見てみよう。

\begin{align}
\int \varphi_{n’l’m’s_z’}^* \hat{V}(t)\varphi_{nlms_z} dV &\ = \int \varphi_{n’l’m’s_z’}^* \left[
-i\frac{e}{\hbar} [\hat{H}_0,\boldsymbol{r} ]\cdot\boldsymbol{A} + \frac{e }{m_e} \hat{S}_yB_y + \frac{e^2 A_0^2}{2m_e}\, \cos^2(kx-\omega t) \right] \varphi_{nlms_z} dV \\
&\ = \int \varphi_{n’l’m’s_z’}^* \left[
-ie \frac{ E_{n’} – E_n }{\hbar}\, z A_0 \cos(kx-\omega t) + \frac{ek\hbar A_0 s_z}{m_e} \,\sin(kx-\omega t) + \frac{e^2 A_0^2}{2m_e}\, \cos^2(kx-\omega t) \right] \varphi_{nlms_z} dV \\
&\ = -\frac{i A_0e}{2} e^{-i\omega t}\int \varphi_{n’l’m’s_z’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z + \frac{k\hbar s_z}{m_e} \right] e^{ikx} \varphi_{nlms_z} dV\\
&\ \ \ \ \ -\frac{i A_0e}{2} e^{i\omega t}\int \varphi_{n’l’m’s_z’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z – \frac{ k\hbar s_z}{m_e} \right] e^{-ikx} \varphi_{nlms_z} dV\\
&\ \ \ \ \ + \frac{e^2 A_0^2}{8m_e} \left[ 1 + e^{-2i\omega t} \int \varphi_{n’l’m’s_z’}^* e^{2ikx} \varphi_{nlms_z} dV + e^{2i\omega t} \int \varphi_{n’l’m’s_z’}^* e^{-2ikx} \varphi_{nlms_z} dV \right]
\end{align}

最後の変形は時間依存部分を積分の外に出すために、

\begin{align}
\cos(kx-\omega t) &\ = \frac{1}{2} \left[ e^{ikx-i\omega t} + e^{-ikx+i\omega t} \right]\\
\sin(kx-\omega t) &\ = \frac{1}{2i} \left[ e^{ikx-i\omega t} – e^{-ikx+i\omega t} \right]\\
\end{align}

と変形しているよ。ちょっと複雑になったけれども、時間依存部分はすべて積分の外に出たので、時間ステップごとに積分を実行しなくて済むね。あとは、ルンゲ・クッタ法などの常微分方程式を解く計算アルゴリズムで、この連立常微分方程式が得られるね。ちなみに、$\hat{\boldsymbol{p}}\cdot\boldsymbol{A}$ は電子の軌道運動による電磁波の吸収と放出を、$\hat{\boldsymbol{s}}\cdot\boldsymbol{B}$ は電子のスピンによる電磁波の吸収と放出を表すよ。また、$\boldsymbol{A}^2$ は電磁場の量子化後に分かるけれども、光子の2個吸収、2個放出、光子の散乱に寄与するよ。

スピンと2次の項を無視する場合

先のポテンシャル積分項にて、スピンと2次の効果を無視すると

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV = -\frac{i A_0e}{2} \left[e^{-i\omega t}\int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z \right] e^{ikx} \varphi_{nlm} dV + e^{i\omega t}\int \varphi_{n’l’m’}^* \left[
\frac{ E_{n’} – E_n }{\hbar}\, z \right] e^{-ikx} \varphi_{nlm} dV \right]
\end{align}

となるね。さらに、原子サイズに対して、波の波長が十分に大きい場合、$ e^{ikx} \simeq 1 $、$ e^{-ikx} \simeq 1$ が十分成り立つね(光子のエネルギー $10[{\rm eV}]$ の波長が約 $100 [{\rm nm}]$ なので十分だね)。積分に関係ない部分をすべて外に出すと

\begin{align}
\int \varphi_{n’l’m’}^* \hat{V}(t)\varphi_{nlm} dV = -i A_0e \frac{ E_{n’} – E_n }{\hbar} \cos(\omega t) \int \varphi_{n’l’m’}^* z \varphi_{nlm} dV
\end{align}

となって、ポテンシャル積分項は、係数を除いて、実質的に以前解説した電気双極子の行列要素と一致するね。このハミルトニアンを元に、次回は水素原子の基底状態にいる電子に電磁波を与えてみるよ。


スピン―軌道相互作用を考慮した水素原子に磁場1テスラ加えたときのエネルギー準位

前回解説した内容を踏まえて、外部から加える磁場を1テスラとしたときの主量子数1から3までのエネルギー準位の計算結果を示すよ。水素原子の場合、外部磁場が1テスラでスピン―軌道相互作用の効果とゼーマン効果がどちらも $10^{-5}[{\rm eV}]$ 程度となるよ。

主量子数1(2状態)

主量子数2(8状態)

主量子数3(18状態)の上半分

主量子数3(18状態)の下半分


スピン―軌道相互作用を考慮した水素原子に磁場を加えよう!

はじめに少し復習するよ。
スピン―軌道相互作用を考慮した水素原子のハミルトニアンは

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e^2}{8\pi \epsilon_0 c^2 r^3 m_e^2 }\,\hat{\boldsymbol{L}}\cdot\hat{\boldsymbol{S}}
\end{align}

だね。このハミルトニアンのエネルギー固有状態となる固有関数は、軌道角運動量とスピン角運動量を合成して生成した $\varphi_{n,l,j,m_j}$ だね。この場合の固有エネルギーは

\begin{align}
E = E_n + \frac{\hbar^2e^2}{16\pi \epsilon_0 c^2 r^3 m_e^2 }\left[ j(j+1) – l(l+1) – \frac{3}{4} \right] \int
\varphi_{nljm_j}^*\,\frac{1}{r^3}\, \varphi_{nljm_j} dV
\end{align}

だったね。これにさらに外部から磁場を加えると、ハミルトニアンに次のように表せるね。

\begin{align}
\hat{H} = \hat{H}_0 + \frac{e^2}{8\pi \epsilon_0 c^2 r^3 m_e^2 }\,\hat{\boldsymbol{L}}\cdot\hat{\boldsymbol{S}} + \frac{eB_z}{2m_e} \left(\hat{L}_z+2\hat{S}_z\right) + \frac{e^2B_z^2}{8m_e} (x^2 + y^2)
\end{align}

このハミルトニアンに現れるゼーマン項の $\hat{L}_z$ と $\hat{S}_z$ はどちらも、先の固有関数 $\varphi_{nljm_j} $ では固有状態にならいんだよね。つまり、このハミルトニアンはたとえ最後の項を無視したとしても、解析的には固有状態を得られそうにないね。これまでと同様の手順で、固有状態をシミュレーションしてみよう!

新しい固有状態を $\varphi_{nljm_j}$ で展開しよう!

先のハミルトニアン $\hat{H}$ の固有関数 $\Psi$ を 軌道角運動量とスピン角運動量を合成して生成した $\varphi_{nljm_j}$ で展開しよう。

\begin{align}
\Psi = \sum\limits_{n, l , j, m_j} a_{nljm_j}\varphi_{nljm_j}
\end{align}

ただし、$n, l, j, m_j$ の範囲は次のとおりだよ。

\begin{align}
0 \le &\ l < n \\ \left|l - \frac{1}{2}\right| \le &\ j \le l + \frac{1}{2} \\ -\left(\le l + \frac{1}{2}\right) \le &\ m_j \le l + \frac{1}{2} \end{align}

シュレーディンガー方程式 $\hat{H}\psi = E\psi $ に代入して、展開係数を決定する方程式を導出しよう。ハミルトニアンを次のように対角成分 $H_0$ と非対角成分を含む $\hat{H}’$ に分けて、$\hat{H} = \hat{H}_0 + \hat{H}’$ と記述すると、シュレーディンガー方程式は次の用になるね。

\begin{align}
\sum\limits_{n, l , j, m_j} (E_n + \hat{H}’) a_{nljm_j}\varphi_{nljm_j} = E \sum\limits_{n, l , j, m_j} a_{nljm_j}\varphi_{nljm_j}
\end{align}

両辺に $\varphi^*_{n’l’j’m’_j}$ を掛けて、全空間で空間積分すると、展開係数 $a_{njlm_j}$ に関する連立方程式が得られるね。

\begin{align}
E_{n’} a_{n’l’j’m’_j} + \sum\limits_{n, l , j, m_j} a_{nljm_j} \int \varphi^*_{n’l’j’m’_j}\hat{H}’ \varphi_{nljm_j} dV = E
a_{n’l’j’m’_j}
\end{align}

あとは、これを連立方程式を数値的に解くだけだね。


軌道角運動量とスピン角運動量を合成したときの固有関数とエネルギーシフト

この前、軌道角運動量とスピン角運動量の合成方法を復習したね。その時に、合成後の量子数 $n, l, j, m_j$ で指定した固有関数と、元の量子数の組み合わせ $n, l, m, s_z$ の固有関数との関係には触れてなかったね。この関係は、合成後の角運動量 $\hat{\boldsymbol{J}} = \hat{\boldsymbol{L}}+ \hat{\boldsymbol{S}}$ を用いた昇降演算子 $\hat{J}^{\pm} = \hat{J}_x \pm i \hat{J}_y$ を用いて計算することができるよ(クレプシュ―ゴルダン係数)。さらにスピン―軌道相互作用を考慮したエネルギー準位を計算した結果(エネルギーシフト)も列挙するよ($n=1,2,3$)。

$n$ $l$ $j$ 記号 $\Delta E\,[{\rm eV}]$ $m_j$ 固有関数 空間分布
$1$ $0$ $\frac{1}{2}$ $^{1}S_{\frac{1}{2}}$ $0$ $ -\frac{1}{2}$ $\varphi_{100\downarrow}$
$ \frac{1}{2}$ $\varphi_{100\uparrow}$
$2$ $ 0$ $\frac{1}{2}$ $^{2}S_{\frac{1}{2}}$ $0$ $ -\frac{1}{2}$ $\varphi_{200\downarrow}$
$ \frac{1}{2}$ $\varphi_{200\uparrow}$
$ 1$ $\frac{1}{2}$ $^{2}P_{\frac{1}{2}}$ $-9.48388 \times 10^{-5}$ $ -\frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[\sqrt{2}\varphi_{21-1\uparrow} – \varphi_{210\downarrow} \right] $
$ \frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[\varphi_{210\uparrow} – \sqrt{2} \varphi_{21+1\downarrow} \right] $
$\frac{3}{2}$ $^{2}P_{\frac{3}{2}}$ $-4.74194 \times 10^{-5}$ $-\frac{3}{2}$ $ \varphi_{21-1\downarrow} $
$-\frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[ \varphi_{21-1\uparrow} + \sqrt{2}\varphi_{210\downarrow} \right] $
$\frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[ \sqrt{2} \varphi_{210\uparrow} + \varphi_{21+1\downarrow} \right] $
$\frac{3}{2}$ $\varphi_{21+1\uparrow}$
$3$ $ 0$ $\frac{1}{2}$ $^{3}S_{\frac{1}{2}}$ $0$ $ -\frac{1}{2}$ $\varphi_{300\downarrow}$
$ \frac{1}{2}$ $\varphi_{300\uparrow}$
$ 1$ $\frac{1}{2}$ $^{3}P_{\frac{1}{2}}$ $-2.81004 \times 10^{-5}$ $ -\frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[\sqrt{2}\varphi_{31-1\uparrow} – \varphi_{310\downarrow} \right] $
$ \frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[\varphi_{310\uparrow} – \sqrt{2} \varphi_{31+1\downarrow} \right] $
$\frac{3}{2}$ $^{3}P_{\frac{3}{2}}$ $1.40502 \times 10^{-5}$ $-\frac{3}{2}$ $ \varphi_{31-1\downarrow} $
$-\frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[ \varphi_{31-1\uparrow} + \sqrt{2}\varphi_{310\downarrow} \right] $
$\frac{1}{2}$ $\frac{1}{\sqrt{3}} \left[ \sqrt{2} \varphi_{310\uparrow} + \varphi_{31+1\downarrow} \right] $
$\frac{3}{2}$ $\varphi_{31+1\uparrow}$
$ 2$ $\frac{3}{2}$ $^{3}D_{\frac{3}{2}}$ $-8.43012 \times 10^{-6}$ $-\frac{3}{2}$ $\frac{1}{\sqrt{5}} \left[ 2\varphi_{32-2\uparrow} -\varphi_{32-1\downarrow} \right] $
$-\frac{1}{2}$ $\frac{1}{\sqrt{5}} \left[ \sqrt{3}\varphi_{32-1\uparrow} -\sqrt{2} \varphi_{320\downarrow} \right] $
$\frac{1}{2}$ $\frac{1}{\sqrt{5}} \left[ \sqrt{2}\varphi_{320\uparrow} -\sqrt{3} \varphi_{32+1\downarrow} \right] $
$\frac{3}{2}$ $\frac{1}{\sqrt{5}} \left[ \varphi_{32+1\uparrow} -2 \varphi_{32+2\downarrow} \right] $
$\frac{5}{2}$ $^{3}D_{\frac{5}{2}}$ $5.62008 \times 10^{-6}$ $-\frac{5}{2}$ $\varphi_{32-2\downarrow}$
$-\frac{3}{2}$ $\frac{1}{\sqrt{5}} \left[ \varphi_{32-2\uparrow} + 2 \varphi_{32-1\downarrow} \right] $
$-\frac{1}{2}$ $\frac{1}{\sqrt{5}} \left[ \sqrt{2} \varphi_{32-1\uparrow} + \sqrt{3} \varphi_{320\downarrow} \right] $
$\frac{1}{2}$ $\frac{1}{\sqrt{5}} \left[ \sqrt{3} \varphi_{320\uparrow} + \sqrt{2} \varphi_{32+1\downarrow} \right] $
$\frac{3}{2}$ $\frac{1}{\sqrt{5}} \left[ 2 \varphi_{32+1\uparrow} + \varphi_{32+2\downarrow} \right] $
$\frac{5}{2}$ $\varphi_{32+2\uparrow}$


「スピン-軌道相互作用」を復習しよう!

前回、スピン角運動量で生み出されるスピン磁気モーメントを考慮して、静磁場を加えた場合の水素原子のエネルギーシフト「異常ゼーマン効果」を復習したね。実は、スピン磁気モーメントは、軌道磁気モーメントと直接相互作用して、「スピン-軌道相互作用」と呼ばれるエネルギーシフトが生じるよ。今回は、この相互作用の表式を導出するよ。

電子の周りを回る電子で生み出される磁場

古典電磁気学によると、電子の周りを回る電子は磁場を生み出すね。この磁場は、原点に磁気双極子モーメント $\boldsymbol{M}$ が原点に存在することで生じる磁場と等価だね。
位置 $\boldsymbol{r}$ における磁場は

\begin{align}
\boldsymbol{B}( \boldsymbol{r} ) = \frac{\mu_0}{4\pi} \left[ \frac{3\boldsymbol{M}\cdot\boldsymbol{r}}{r^5} \boldsymbol{r} – \frac{\boldsymbol{M}}{r^3} \right]
\end{align}

となるね。この磁場と電子のスピン磁気モーメントとの相互作用を考えるので、$\boldsymbol{r}$ を電子の位置ベクトルとすると、$\boldsymbol{M}\cdot\boldsymbol{r} = 0$ だよね。そして、この $\boldsymbol{M}$ を軌道磁気モーメント $\hat{\boldsymbol{M}}_L = -e\hat{\boldsymbol{L}}/2m_e$ で置き換えると

\begin{align}
\boldsymbol{B}( \boldsymbol{r} ) = -\frac{\mu_0}{4\pi}\, \frac{\hat{\boldsymbol{M}}_L}{r^3} =\frac{\mu_0 e}{8\pi r^3m_e }\hat{\boldsymbol{L}}
\end{align}

となるね。これが、原子の位置に軌道磁気モーメントをおいた場合に、電子の位置で生じる磁場の表式になるね。この磁場と電子のスピン磁気モーメントが相互作用することで、エネルギーは $ \Delta E = – \langle \hat{\boldsymbol{M}}_S \cdot \boldsymbol{B} \rangle$ だけシフトするね。なので、ハミルトニアンは次のようになるね。

\begin{align}
\hat{H} = \hat{H}_0 + \hat{H}_{LS}=\hat{H}_0 – \boldsymbol{M}_S \cdot \boldsymbol{B} = \hat{H}_0 + \frac{g\mu_0 e^2}{16\pi r^3m_e^2 }\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{L}}
\end{align}

ランデのg因子を「2」、$\mu_0$ を光速との関係式 $c^2 = 1/\epsilon_0\mu_0$ で書き直すと

\begin{align}
\hat{H} = \hat{H}_0 – \boldsymbol{M}_S \cdot \boldsymbol{B} = \hat{H}_0 + \frac{e^2}{8\pi \epsilon_0 c^2 r^3 m_e^2 }\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{L}}
\end{align}

となるね。こちらの方が一般的な表式だね。

$\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{L}}$ の固有状態

「スピン-軌道相互作用」項の $\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{L}}$ は、

\begin{align}
2\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{L}} = (\hat{\boldsymbol{S}} + \hat{\boldsymbol{L}})^2 – \hat{\boldsymbol{S}}^2 – \hat{\boldsymbol{L}}^2
\end{align}

と変形できて、右辺の各項 $\hat{\boldsymbol{J}}^2 = (\hat{\boldsymbol{S}} + \hat{\boldsymbol{L}})^2, \hat{\boldsymbol{S}}^2, \hat{\boldsymbol{L}}^2$ と、$\hat{J}_z = \hat{S}_z + \hat{L}_z$ は互いに交換するから、
これらの固有関数となる量子数、$j , s, l, m_j$ を用いた、同時固有関数 $\varphi_{jlm_js}$ 固有状態となるね。

\begin{align}
\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{L}} \varphi_{jlm_js} = \frac{\hbar^2}{2} \left[ j(j+1) – l(l+1) – s(s+1) \right] \varphi_{jlm_js}
\end{align}

ただし、電子のスピンの大きさは「1/2」なので $s = 1/2$ だね。また、角運動量の合成の議論から $ l – 1/2 \leq j \leq l + 1/2 $ ($j \geq 0$)、$ -(l + 1/2 ) \leq m_j \leq l + 1/2 $ となるよ。

スピン-軌道相互作用を含めたハミルトニアンの固有状態

スピン-軌道相互作用のハミルトニアンに固有関数 $\varphi_{jlm_j}$ ($s$は$1/2$で固定なので省略)を作用させた結果は

\begin{align}
\hat{H}_{LS} \varphi_{jlm_j}=\frac{\hbar^2e^2}{16\pi \epsilon_0 c^2 r^3 m_e^2 }\left[ j(j+1) – l(l+1) – \frac{3}{4} \right]\varphi_{jlm_j}
\end{align}

となるね。右辺の係数に $r$ 依存性があるけど、$\varphi_{jlm_j}$ が固有関数になっているね。スピン-軌道相互作用項のエネルギー固有値は

\begin{align}
\hat{E}_{LS} =\frac{\hbar^2e^2}{16\pi \epsilon_0 c^2 m_e^2 }\left[ j(j+1) – l(l+1) – \frac{3}{4} \right] \int \varphi_{nljm_j}^*\,\frac{1}{r^3}\, \varphi_{nljm_j} dV
\end{align}

となるね。固有関数の空間積分を具体的に計算することで、具体的な値が決定できるね。次回はエネルギー固有値を調べてみよう!