【量子コンピュータを作ろう!】(17)2つの独立した2重量子井戸に束縛された電子による制御NOT演算計算結果



今回は、前回示したハミルトニアン(クーロン相互作用+静電場+電磁波)を用いて計算した結果を示すよ。上左図は前々回に示したエネルギー準位の静電場強度依存性だけれども、$|10\rangle$ と $|11\rangle$ のエネルギー差に対応した電磁波を入射して生じる状態遷移を計算するよ。ちなみにこれは、第1量子ビットが $|1\rangle$ のときに第2量子ビットを反転させる制御・NOT演算に対応しているよ。あとで示すけれども、2量子ビットのラビ振動は量子ビット同士が絡み合った量子もつれ(エンタングル)状態を任意に生成することができるよ。

遷移状態:$|10\rangle$ と $|11\rangle$ の存在確率の時間依存性

次のグラフは初期状態 $|10\rangle$ に角振動数 $\omega = \Delta E /\hbar$ の電磁波を入射したときの、$|11\rangle$ との状態遷移の様子だよ。ラビ振動の結果、2つの状態を三角関数的に行ったり来たりするね。$|10\rangle$ 100%の初期状態に約 $ 26.1[{\rm ns}]$ 照射すると、$|10\rangle$ と $|11\rangle$ の存在確率は50%つづとなり、さらに約 $ 26.1[{\rm ns}]$ 照射すると、反対に $|11\rangle$ 100% の状態になるね。ちょうど存在確率が反転する時間の光は「$\pi$パルス」って呼ばれるよ。

先にも言ったけれども、このラビ振動は2量子ビット同士が絡み合った量子もつれ状態を生み出すことができるね。例えば、$|10\rangle$ と基底状態の $|01\rangle$ のエネルギー差 $\Delta E_{01}^{11}$ として、角振動数 $\omega = \Delta E_{01}^{11} /\hbar$ の電磁波を $\pi$パルスの半分を入射すると、

\begin{align}
|\Psi(t)\rangle = \frac{1}{\sqrt{2}} \left[ |10\rangle + |01\rangle \right]
\end{align}

という状態を作ることができるね。これは単に $|10\rangle$ と $|01\rangle $ の存在確率が 50%づつっていうだけでなくて、第1量子ビットを観測したときに、第2量子を観測しなくてもその状態が100%の確率で分かるという量子もつれ状態となっているよ。具体的には、第1量子ビットが $|0\rangle$ の場合には第2量子ビットは必ず $|1\rangle$ に存在し、また反対に第1量子ビットが $|1\rangle$ の場合には第2量子ビットは必ず $|0\rangle$ に存在するよ。ちなみに、この量子井戸の間隔を量子状態が変化しないようにゆっくりと、どこまで離していっても成り立つよ。そのため、通信に利用することができると考えられているよ。その場合は、量子井戸による量子もつれではなく、光子をを用いた量子もつれを利用するよ。

制御NOT演算に対応する波動関数の時間発展

次の図はラビ振動による制御NOT演算時の波動関数の時間経過を示したアニメーションだよ。左の第1量子井戸は電子が右側( $|1\rangle$ )、第2量子井戸は電子が左側( $|0\rangle$ )と右側( $|1\rangle$ )を行ったり来たりしているね。

これで量子コンピュータの2量子ビットマシンの動作原理シミュレーションは完成したよ。


【量子コンピュータを作ろう!】(16)2つの独立した2重量子井戸に束縛された電子による制御NOT演算のハミルトニアンと計算方法


いよいよ最終目的の2量子ビットによる制御NOT演算を行うために、時間発展に必要なハミルトニアンの導出と計算方法を示すよ。復習から入っていくね。量子ビットを表す2つの量子井戸(幅:$L=10[{\rm nm}]$、高さ$+\infty$)はそれぞれが壁(幅: $W=L/5=2[{\rm nm}]$、高さ $V_0=0.3[{\rm eV}]$)で仕切られた2部屋になっていて、前々回前回解説したとおり、2つの量子井戸の間隔 $R$ がちょうどよければ($R=20[{\rm nm}]$)、電子間のクーロン相互作用が存在しても、電子は左右のどちらかに存在する状態を作り出せるね。そして、それぞれの量子井戸で左側に電子が存在する状態を $|0\rangle$、右側に電子が存在する場合を $|1\rangle$ と表わして、2電子の状態は $|00\rangle$、$|01\rangle$、$|10\rangle$、$|11\rangle$ の4パターンで表すよ。

定常状態のハミルトニアンと固有関数

この系の固有関数は、2つの量子井戸でそれぞれ定義される関数

\begin{align}
\varphi_{n_1}(x_1) &\ = \sqrt{\frac{2}{L}}\sin\left[ k_{n_1} \left( x_1 + \frac{R}{2} + \frac{L}{2}\right)\right] \ , \
k_{n_1} = \frac{\pi(n_1+1)}{L} \\
\varphi_{n_2}(x_2) &\ = \sqrt{\frac{2}{L}}\sin\left[ k_{n_2} \left( x_2 – \frac{R}{2} + \frac{L}{2}\right)\right] \ , \
k_{n_2} = \frac{\pi(n_2+1)}{L} \\
\end{align}

を用いたその積

\begin{align}
\varphi_{n_1n_2}(x_1, x_2) = \varphi_{n_1}(x_1)\varphi_{n_2}(x_2)
\end{align}

で表される正規直交系で展開することができるね。ちなみに単純な積で表されるのは2つの電子は交わらないからだよ。この2電子系の正規直交関数を用いて、次のように展開することができるね。

\begin{align}
\psi_{l_1l_2}(x_1, x_2) = \sum\limits_{n_1n_2} a^{(l_1l_2)}_{n_1n_2} \varphi_{n_1n_2}(x_1, x_2)
\end{align}

$l_1$ と $l_2$ は $0$ または $1$ のどちらかを取り、$\psi_{00}(x_1, x_2)$ は $|00\rangle$、$\psi_{01}(x_1, x_2)$ は $|01\rangle$、$\psi_{10}(x_1, x_2)$ は $|10\rangle$、$\psi_{11}(x_1, x_2)$ は $|11\rangle$ にそれぞれ対応した固有関数だよ。$a^{(l_1l_2)}_{n_1n_2}$ のように上付きのインデックス $l_1, l_2$ をつけたのはそれぞれの状態で展開係数の値が異なるので明示的につけているよ。この固有関数に対応するハミルトニアンは次のとおりだよ。

\begin{align}
\hat{H}^{(0)} = -\frac{\hbar^2}{2m_e}\, \frac{\partial^2}{\partial x_1^2} + eE_xx_1 + V_1(x_1)-\frac{\hbar^2}{2m_e}\, \frac{\partial^2}{\partial x_2^2} + eE_xx_2 + V_2(x_2) + \frac{e^2}{4\pi\epsilon_0}\,\frac{1}{|x_1-x_2|}
\end{align}

$\hat{H}^{(0)}$ とインデックスに $(0)$ をつけているのは、前回すでに固有状態を計算できていて、次はこれに電磁波を加えることを想定しているからだよ。先の固有関数はこのハミルトニアンなので固有状態は

\begin{align}
\hat{H}^{(0)}\psi_{l_1l_2}(x_1, x_2) = E^{(0)}_{l_1l_2}\psi_{l_1l_2}(x_1, x_2)
\end{align}

と表されるよ。ここまでが前回の内容だね。ちなみに固有状態は

\begin{align}
\hat{H}^{(0)}|l_1l_2\rangle &\ = E^{(0)}_{l_1l_2}|l_1l_2\rangle \\
\langle l_1l_2| \hat{H}^{(0)} &\ = \langle l_1l_2|E^{(0)}_{l_1l_2}
\end{align}

とも表すことができるよ。これは後で使うね。

電磁波を入射したときのハミルトニアンと計算方法


次に状態遷移を起こすために電磁波を加えるよ。ベクトルポテンシャルを $\boldsymbol{A}(t)$ としてハミルトニアンは

\begin{align}
\hat{H}(t) = \hat{H}^{(0)} + \frac{e}{m_e} \boldsymbol{A}(t)\cdot \hat{\boldsymbol{p}}_1 + \frac{e}{m_e} \boldsymbol{A}(t)\cdot \hat{\boldsymbol{p}}_2
\end{align}

となるね。今回も1次元系で考えているので、ベクトルポテンシャルを$\boldsymbol{A}(t) = (A_x(t), 0, 0)$ として、

\begin{align}
A_{x_1}(t) &\ = A_0 \cos(kx_1-\omega t)\\
A_{x_2}(t) &\ = A_0 \cos(kx_2-\omega t)
\end{align}

なので、ハミルトニアンは

\begin{align}
\hat{H}(t) = \hat{H}^{(0)} + \frac{e}{m_e} A_0 \left[ \cos(kx_1-\omega t)\hat{p}_{x_1} +\cos(kx_2-\omega t)\hat{p}_{x_2} \right]
\end{align}

となるね。このハミルトニアンは時間に依存するので固有状態は存在しないので、波動関数 $\Psi(t,x_1,x_2)$ を先の固有関数 $\psi_{l_1l_2}(x_1, x_2)$ で展開するよ。

\begin{align}
\Psi(t,x_1,x_2) = \sum\limits_{l_1 l_2} b_{l_1l_2}(t) \psi_{l_1l_2}(x_1, x_2)
\end{align}

$b_{l_1l_2}(t)$ が展開係数で、この展開係数が時間とともに変化するよ。時間に依存するシュレーディンガー方程式

\begin{align}
i\hbar \frac{\partial }{\partial t} \Psi(t,x_1,x_2)= \hat{H}(t) \Psi(t,x_1,x_2)
\end{align}

に代入して、両辺に $\psi_{m_1m_2}^*(x_1, x_2)$ を掛けて全空間で積分すると、次のような連立微分方程式になるよ。

\begin{align}
i\hbar \frac{d b_{m_1m_2}(t) }{d t} = E^{(0)}_{m_1m_2} b_{m_1m_2}(t) + e A_0 \sum\limits_{l_1 l_2} b_{l_1l_2}(t) \langle m_1 m_2| \left[\cos(kx_1-\omega t)\frac{\hat{p}_{x_1}}{m_e} + \cos(kx_2-\omega t)\frac{\hat{p}_{x_2}}{m_e}\right]| l_1l_2 \rangle
\end{align}

$\hat{p}_{x_1}/m_e = [\hat{H}^{(0)}, x_1 ]/i\hbar$、 $\hat{p}_{x_2}/m_e = [\hat{H}^{(0)}, x_2 ]/i\hbar$ の恒等式と長波長近似($kx_1 = kx_2 \simeq 0$)を考慮すると次のようになるよ(特に長波長近似を課すことをしなくても数値計算自体は問題なくできるよ。でも表式が簡単になるね)。

\begin{align}
&\ \langle m_1 m_2| \left[\cos(kx_1-\omega t)\frac{\hat{p}_{x_1}}{m_e} + \cos(kx_2-\omega t)\frac{\hat{p}_{x_2}}{m_e}\right]| l_1l_2 \rangle\\
&\ =\frac{1}{i\hbar} \langle m_1 m_2| \left[\cos(kx_1-\omega t)\left(\hat{H}^{(0)}x_1 – x_1\hat{H}^{(0)}\right) + \cos(kx_2-\omega t)\left(\hat{H}^{(0)}x_2- x_2\hat{H}^{(0)}\right)\right]| l_1l_2 \rangle\\
&\ \simeq \frac{1}{i\hbar}\cos(\omega t)\langle m_1 m_2| \left[\hat{H}^{(0)}x_1 – x_1\hat{H}^{(0)} + \hat{H}^{(0)}x_2- x_2\hat{H}^{(0)}\right]| l_1l_2 \rangle\\
&\ = \frac{1}{i\hbar}\cos(\omega t) \left( E^{(0)}_{m_1m_2} – E^{(0)}_{l_1l_2} \right) \langle m_1 m_2|(x_1 + x_2)| l_1l_2
\rangle \\
&\ = \frac{1}{i\hbar}\cos(\omega t) \left( E^{(0)}_{m_1m_2} – E^{(0)}_{l_1l_2} \right) \int_{-\frac{R}{2}-\frac{L}{2}}^{-\frac{R}{2}+\frac{L}{2}} dx_1\int_{\frac{R}{2}-\frac{L}{2}}^{\frac{R}{2}+\frac{L}{2}}dx_2 \psi_{m_1m_2}^*(x_1, x_2)(x_1 + x_2)\psi_{l_1l_2}(x_1, x_2)\\
&\ \equiv \frac{1}{i\hbar}\cos(\omega t) \left( E^{(0)}_{m_1m_2} – E^{(0)}_{l_1l_2} \right) K^{m_1m_2}_{l_1l_2}
\end{align}

この $K^{m_1m_2}_{l_1l_2}$ は時間に依存しないので1度計算すれば良いね。この $K^{m_1m_2}_{l_1l_2}$ を用いると先の連立微分方程式は次のようになるよ。

\begin{align}
i\hbar \frac{d b_{m_1m_2}(t) }{d t} = E^{(0)}_{m_1m_2} b_{m_1m_2}(t) + \frac{e A_0}{i\hbar} \cos(\omega t) \sum\limits_{l_1 l_2} b_{l_1l_2}(t) \left( E^{(0)}_{m_1m_2} – E^{(0)}_{l_1l_2} \right)K^{m_1m_2}_{l_1l_2}
\end{align}

電磁波の角振動数が2準位間のエネルギー差 $\Delta E = E^{(0)}_{m_1m_2} – E^{(0)}_{l_1l_2}$ と表して $\omega = \Delta E / \hbar$ となるときに、2準位間を周期的に遷移するね。$\Delta E = E^{(0)}_{11} – E^{(0)}_{10}$ を与えることで、制御・NOT演算となることを次回シミュレーションするよ。


【量子コンピュータを作ろう!】(6)量子ドットに束縛された電子に静電場+電磁波を加えたときの状態遷移の計算結果(シュタルク効果+ラビ振動)

まず、次の図は量子ドットに束縛された電子に $E_x = 2\times10^{6}[{rm eV}]$ の大きさの静電場を加えてることで変化した基底状態と励起状態だよ。基底状態は電場の向きの反対側に分布が偏って、励起状態は反対に電場の向きと同じ方向に分布が偏っているね。これは電気双極子が生じていると考えられるね。基底状態と励起状態の電気双極子はそれぞれ $\boldsymbol{p}_0 = -2e \langle \tilde0|x |\tilde0\rangle >0$ と $\boldsymbol{p}_1 = -2e \langle \tilde1|x |\tilde1\rangle< 0 $ となるよ。これらの電気双極子と静電場との相互作用によって、静電エネルギーは $ \Delta U = \boldsymbol{p} \cdot \boldsymbol{E} $ だけ変化するよ。さらに、この電気双極子によって生じる電場によって、外部から基底状態と励起状態のどちらの準位に存在するか測定することができるね。

次に、この2準位間のエネルギー差($\Delta E = 0.01267 [{\rm eV}]$)に対応する光子エネルギーの電磁波(振動数:$f = 3.062 [{\rm THz}] $、波長:$\lambda = 97.90 [{\rm \mu m}] $)を入射して、2準位間のラビ振動をシミュレーションした結果を示すよ。想定通り、2準位間をsin関数的に遷移する様子が確認できたね。


【量子コンピュータを作ろう!】(5)量子ドットに束縛された電子に静電場+電磁波を加えたときのハミルトニアンと計算方法(シュタルク効果+ラビ振動)

量子ドットに束縛された電子に静電場を加えてることで変化した基底状態と第一励起状態に対して、外部から電磁波を与えて状態遷移の時間発展させることを考えるよ。静電場を加え無い場合と同様にラビ振動するはずだけれども、ちゃんとシミュレーションできるかどうかを確かめるよ。この場合のハミルトニアンは次のとおりだね。

\begin{align}
\hat{H} = -\frac{\hbar^2}{2m_e} \frac{d^2}{dx^2} + e E_x x + \frac{e}{m_e} \boldsymbol{A}\cdot \hat{\boldsymbol{p}}
\end{align}

静磁場を加えたときの固有状態は数値的はすでに解けているので、そのハミルトニアンを $\hat{H}_{\rm Field}$ と表して、その固有関数を $\tilde{\varphi}_n(x)$、固有エネルギーを $\tilde{E}_n$ と表すと、次の固有方程式

\begin{align}
\hat{H}_{\rm Field} \tilde{\varphi}_n(x) = \tilde{E}_n\tilde{\varphi}_n(x)
\end{align}

を満たすね。ちなみに固有状態を明示的に表しておくと
\begin{align}
\tilde{\varphi}_n(x) = \sum\limits_{n’=0} a^{(n)}_{n’}\varphi_{n’}(x) = \sqrt{\frac{2}{L}} \sum\limits_{n’=0} a^{(n)}_{n’} \sin\left[ k_n (x + \frac{L}{2}) \right] \ , \ k_n = \frac{\pi(n+1)}{L}
\end{align}

となって、この $a^{(n)}_{n’}$ が既知であるという意味だよ。このハミルトニアン $\hat{H}_{\rm Field}$ を用いて、元のハミルトニアンは

\begin{align}
\hat{H} = \hat{H}_{\rm Field} + \frac{e}{m_e} \boldsymbol{A}\cdot \hat{\boldsymbol{p}}
\end{align}

と表すことができて、$\tilde{E}_n$ と $\tilde{\varphi}_n(x)$ はすでに既知なので、前回と同様にラビ振動をシミュレーションできそうだね。今回も1次元系で考えているので、ベクトルポテンシャルを $\boldsymbol{A}(t) = (A_x(t), 0, 0)$ として、

\begin{align}
A_x(t) = A_0 \cos(kx-\omega t)
\end{align}

と考えるよ。そして、電磁波を入射するときの波動関数を

\begin{align}
\tilde{\psi}(x, t) = \sum\limits_{n=0} \tilde{a}_n(t) \tilde{\varphi}_n(x)
\end{align}

という感じに、展開してその係数の値が時間に依存すると考えるよ。これを時間依存を考慮したシュレーディンガー方程式

\begin{align}
i \hbar \frac{\partial }{\partial t} \tilde{\psi}(x, t) = \hat{H} \tilde{\psi}(x, t)
\end{align}

に代入して、両辺に $\tilde{\varphi}^*_m(x)$ を掛けて全空間で積分するよ。すると、$\tilde{a}_m(t)$ に関する連立常微分方程式が得られるね。

\begin{align}
i \hbar \frac{d \tilde{a}_m(t)}{d t} = E^{(0)}_m \tilde{a}_m(t) + \sum\limits_{n=0} \langle \tilde{m} | \hat{V}(t) | \tilde{n} \rangle \tilde{a}_n(t)
\end{align}

$\langle \tilde{m} | \hat{V}(t) | \tilde{n} \rangle$ は、

\begin{align}
\langle \tilde{m} | \hat{V}(t) | \tilde{n} \rangle \equiv \int_{-\frac{L}{2}}^{\frac{L}{2}} \tilde{\varphi}^*_m(x) \hat{V}(t)
\tilde{\varphi}_n(x)\, dx = \sum\limits_{n’, m’=0} a^{(m)*}_{m’} a^{(n)}_{n’} \int_{-\frac{L}{2}}^{\frac{L}{2}} \varphi^*_{m’}(x) \hat{V}(t)
\varphi_{n’}(x)\, dx = \sum\limits_{n’, m’=0} a^{(m)*}_{m’} a^{(n)}_{n’} \langle m’ | \hat{V}(t) | n’ \rangle
\end{align}

となって、静電場が無い場合の固有関数の積分の和で表すことができるね。$\hat{p}_x/m_e = [\hat{H}_0, x ]/i\hbar$ を考慮すると

\begin{align}
\langle m’ | \hat{V}(t) | n’ \rangle = \frac{1}{L}\int_{-\frac{L}{2}}^{\frac{L}{2}} \varphi^*_{m’}(x) \hat{V}(t)
\varphi_{n’}(x)\, dx = \frac{eA_0}{m_e} \langle m’ | \cos(kx-\omega t) p_x | n’ \rangle = \frac{eA_0}{i\hbar} \langle m’ | \cos(kx-\omega t) [\hat{H}_0, x ] | n’ \rangle
\end{align}

と変形できて、今回も波長が量子ドットのサイズよりも十分大きいと仮定すると、$kx \simeq 0$ と近似することができるので

\begin{align}
\langle m’ | \hat{V}(t) | n’ \rangle = \frac{eA_0}{i\hbar} \cos(\omega t) \left[ E^{(0)}_{m’} – E^{(0)}_{n’} \right] \langle m’ |
x | n’ \rangle
\end{align}

となるので、最終的に $\langle \tilde{m} | \hat{V}(t) | \tilde{n} \rangle$ は

\begin{align}
\langle \tilde{m} | \hat{V}(t) | \tilde{n} \rangle = \frac{eA_0}{i\hbar} \cos(\omega t) \sum\limits_{n’, m’=0} a^{(m)*}_{m’} a^{(n)}_{n’} \left[ E^{(0)}_{m’} – E^{(0)}_{n’} \right] \langle m’ | x | n’ \rangle = \frac{eA_0}{i\hbar} \cos(\omega t) K_{mn}
\end{align}

となるね。$K_{mn}$ は一度計算するれば良いので、これを用いて、展開係数$\tilde{a}_m(t)$ に関する連立常微分方程式は

\begin{align}
i \hbar \frac{d \tilde{a}_m(t)}{d t} = \tilde{E}_m \tilde{a}_m(t) + \frac{eA_0}{i\hbar} \cos(\omega t)\sum\limits_{n=0} K_{mn} a_n(t)
\end{align}

となるね。この $\tilde{E}_m, K_{mn}$ はあらかじめ計算することができるね。電磁波の角振動数が2準位間のエネルギー差 $\Delta E = \tilde{E}_1 – \tilde{E}_0$ と表して $\omega = \Delta E / \hbar$ となるときに、2準位間を周期的に遷移するね。次回はこれをシミュレーションするよ。


【量子コンピュータを作ろう!】(4)量子ドットに束縛された電子に電磁波を加えたときの状態遷移の計算結果(ラビ振動)

前回、定式化した量子ドットに束縛された電子に電磁波を加えたときの計算結果を示すよ。量子井戸の横幅は $L = 10 \times 10^9 [{\rm m}]$( $=10[{\rm nn}]$ )としているよ。 次の図は、基底状態100%の初期状態の電子に、第一励起状態と基底状態のエネルギー差の電磁波を入射したときの時間依存性だよ。想定通り、ラビ振動として知られる2つの準位間をsin関数的に振動する様子がわかるね。

基底状態100%から励起状態100%まで遷移する時間間隔の電磁波パルスは、πパルスと呼ばれるよ。量子コンピュータの量子ビットを入れ替えるのに利用されるね。次回は、静電場を加えた電子に対して、ラビ振動をちゃんと起こせるかをチェックするよ。


【量子コンピュータを作ろう!】(3)量子ドットに束縛された電子に電磁波を加えたときのハミルトニアンと計算方法(ラビ振動)

今度は静電場の代わりに、量子ドットに束縛された電子に電磁波(直線偏光)を外部から与えて、基底状態と第一励起状態との間のラビ振動を確認するよ。電磁波を表すベクトルポテンシャルを $\boldsymbol{A}$ とした場合のハミルトニアンは次のとおりだね(参考)。

\begin{align}
\hat{H} = \hat{H}_0 + \hat{V}(t) = -\frac{\hbar^2}{2m_e} \frac{d^2}{dx^2} + \frac{e}{m_e} \boldsymbol{A}\cdot \hat{\boldsymbol{p}}
\end{align}

今回は1次元系で考えているので、ベクトルポテンシャルを $\boldsymbol{A}(t) = (A_x(t), 0, 0)$ として、

\begin{align}
A_x(t) = A_0 \cos(kx-\omega t)
\end{align}

と考えるよ。そして、このハミルトニアンの固有関数を外場が無いときの固有関数

\begin{align}
\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left[ k_n (x + \frac{L}{2}) \right] \ , \ E_n = \frac{\hbar^2 k_n^2}{2m_e} \ , \
k_n = \frac{\pi(n+1)}{L}
\end{align}

で展開して、その係数の値が時間に依存するとして展開するよ。

\begin{align}
\psi(x, t) = \sum\limits_{n=0} a_n(t) \varphi_n(x)
\end{align}

これを時間依存を考慮したシュレーディンガー方程式

\begin{align}
i \hbar \frac{\partial }{\partial t} \psi(x, t) = \hat{H} \psi(x, t)
\end{align}

に代入して、両辺に $\varphi^*_m(x)$ を掛けて全空間で積分するよ。すると、$a_m(t)$ に関する連立常微分方程式が得られるね。

\begin{align}
i \hbar \frac{d a_m(t)}{d t} = E^{(0)}_m a_m(t) + \sum\limits_{n=0} \langle m | \hat{V}(t) | n \rangle a_n(t)
\end{align}

$\langle m | \hat{V}(t) | n \rangle$ は、$\hat{p}_x/m_e = [\hat{H}_0, x ]/i\hbar$ を考慮すると

\begin{align}
\langle m | \hat{V}(t) | n \rangle \equiv \int_{-\frac{L}{2}}^{\frac{L}{2}} \varphi^*_m(x) \hat{V}(t)
\varphi_n(x)\, dx = \frac{eA_0}{m_e} \langle m | \cos(kx-\omega t) p_x | n \rangle = \frac{eA_0}{i\hbar} \langle m | \cos(kx-\omega t) [\hat{H}_0, x ] | n \rangle
\end{align}

と変形できて、波長が量子ドットのサイズよりも十分大きいと仮定すると、$kx \simeq 0$ と近似することができるので

\begin{align}
\langle m | \hat{V}(t) | n \rangle = \frac{eA_0}{i\hbar} \cos(\omega t) \left[ E^{(0)}_m – E^{(0)}_n \right] \langle m |
x | n \rangle
\end{align}

となるので、$a_m(t)$ に関する連立常微分方程式は

\begin{align}
i \hbar \frac{d a_m(t)}{d t} = E^{(0)}_m a_m(t) + \frac{eA_0}{i\hbar} \cos(\omega t)\sum\limits_{n=0} \left[ E^{(0)}_m – E^{(0)}_n \right] \langle m | x | n \rangle a_n(t)
\end{align}

となるね。$\langle m |x | n \rangle $ は時間に依存しないので、一度計算するだけでいいね。電磁波の角振動数が2準位間のエネルギー差 $\Delta E$ と表して $\omega = \Delta E / \hbar$ となるときに、2準位間を周期的に遷移するね。次回はこれをシミュレーションするよ。


水素原子の外場による光電効果の計算結果

この前導出した水素原子の外場による光電効果の計算方法に基づいて計算した結果を示すよ。入射した電磁場の波長は $ \lambda = 10\, a_B $ ( $a_B$ はボーア半径、 $ E= E = 2343[{\rm eV}] $)。長さ $L$ の箱内で定義される平面波で展開したせいか、飛び出したはずの電子が、外場の影響を受けてまた基底状態に戻るっていう結果になってしまったよ。考えてみれば、これはラビ振動と全く同じ物理的な状況だね。

\[\begin{align}
i
\end{align}\tag{10}\]

水素原子に電磁波(古典・直線偏光)を加えたときのシミュレーション結果(ラビ振動)

以前解説したハミルトニアンを用いて、水素原子の基底状態の電子に電磁波(古典・円偏光)を入射したの様子をシミュレーションしたよ。結果を示すね。

角振動数 $\omega_{12} = (E_2-E_1)/\hbar$ の電磁波を入射

次のグラフは、基底状態と第1励起状態のエネルギー準位の差に対応する電磁波を入射した結果だよ。$ \varphi_{100} $ と $ \varphi_{210}, \varphi_{21-1}, \varphi_{21+1} $ の間でラビ振動している様子が分かるね。

直線偏光の場合は、$\varphi_{210}$ にしか遷移しなかったけれども、円偏光を入射すると $ \varphi_{21-1} $ と $ \varphi_{21+1} $ にもそれぞれ25%づつ遷移するね。これらの和は、y軸方向に向いた電気双極子を表すので、円偏光と言っても、実質的には、z軸方向とy軸方向にそれぞれ電気双極子が誘起されるって感じだね。


水素原子に電磁波(古典・直線偏光)を加えたときのシミュレーション結果(ラビ振動)

以前解説したハミルトニアンを用いて、水素原子の基底状態の電子に電磁波(古典・直線偏光)を入射したの様子をシミュレーションしたよ。結果を示すね。

角振動数 $\omega_{12} = (E_2-E_1)/\hbar$ の電磁波を入射

次のグラフは、基底状態と第1励起状態のエネルギー準位の差に対応する電磁波を入射した結果だよ。$ \varphi_{100} $ と $ \varphi_{210} $ の間でラビ振動している様子が分かるね。

角振動数 $\omega_{12} = (E_2-E_1)/\hbar$ と $\omega_{23} = (E_3-E_2)/\hbar$の電磁波を入射

次のグラフは、基底状態と第1励起状態のエネルギー準位の差に対応する電磁波と、第1励起状態と第2励起状態ののエネルギー準位の差に対応する電磁波を同時に入射した結果だよ。$ \varphi_{100} $ と $ \varphi_{210} $ に加えて、$ \varphi_{100} $ から直接遷移することができない $ \varphi_{300} $ と $ \varphi_{320} $ にも励起しているね。このように、直接遷移が許されない状態が加わっても、存在確率が周期的に振動するのはちょっと意外だね。

次回は、円偏光の電磁波を入射するよ。